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Since the intelligent systems require a huge dataset of motion and label to recognize the meaning (label) of the
body motion, we consider active learning in which the systems ask the label to users. We aim to realize an effective
learning and question management method by considering the context in motion performance. In this paper, we
use VR avatars that perform motions in different contexts, and define the context by tools and places used in the
motion performance. Active learning was performed by combining each method concerning three points of context
selection method, selection of Open/Close question, and label estimation method. We showed that the combination
of margin sampling as context selection, naive Bayes as label estimation method, and performing open question at
the beginning of the question and close question at latter term, is most efficient.
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3.1
Random selec-
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• Random Selection:

s ∼ 1

|S| (1)

• Entropy-based:

s ← argmax
s

H(W |s) (2)

• Margin Sampling:

s ← argmin
s

{P (ŵs,1|s)− P (ŵs,2|s)} (3)

• Least Confident:

s ← argmin
s

max
w

P (w|s) (4)
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• All:
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(9)

all
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