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We investigated the capability of general neural-network-based object detection and recognition techniques to
automatically detecting in video characteristic states of cows which are relevant signs of calving. To prevent fatal
accidents during calving, it is desirable to detect calving signs in video and image information from camera. End-
to-end estimation of calving signs from video is not realistic without large-scale datasets. This study therefore
attempts to detect from videos characteristic states that are observable as calving signs (e.g., standing/lying,
tail rising, and protrusion of the allanto and amnion). For that purpose, we built a cow monitoring dataset by
crowdsourcing, and trained and evaluated state detection systems based on convolutional neural networks on the
developed dataset. Experimental comparisons demonstrated that cow standing and allanto and amnion detections
perform well and that these features contribute to calving sign detection from video.
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1: .

cattle state train validation test

standing 10170 1130 800

allanto & amnion 7612 844 800

tail rising 5714 634 800

2: AUC.

network standing allanto & amnion tail rising

VGG16 0.95 0.90 0.56

ResNet50 0.98 0.92 0.48
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