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Automatic analysis of electrocardiograms (ECG) has been attempted. Although almost all methods pay attention
only to short-term waveforms, their changes over time are said often important in diagnosis. In this paper, we
focus on such long-term waveform change and propose a method to extract it as a pattern. The proposed method
combines a method of expressing time series data as a trajectory in a feature space and feature extraction by an
autoencoder. Evaluation experiments suggested the existence of regularity in the pattern and its association with
the disease.
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1:

Name Shape Operation performed

Input 216× 3 —

Conv-1 216× 16 3× 16 convolution

Activate-1 216× 16 ReLU activation

Pool-1 72× 16 3 maxpool

Conv-2 72× 8 3× 8 convolution

Activate-2 72× 8 ReLU activation

Pool-2 36× 8 2 maxpool

Conv-3 36× 4 3× 4 convolution

Activate-3 36× 4 ReLU activation

Pool-3 18× 4 2 maxpool

Conv-4 18× 8 3× 8 convolution

Activate-4 18× 8 ReLU activation

Upsample-4 36× 8 2 upsampling

Conv-5 36× 16 3× 16 convolution

Activate-5 36× 16 ReLU activation

Upsample-5 72× 16 2 upsampling

Conv-6 72× 3 3× 3 convolution

Output 216× 3 3 upsampling
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