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We propose a time-series gradient boosting decision tree for a data set with time-series and cross-sectional
attributes. Our time-series gradient boosting tree has weak learners with time-series and cross-sectional attribute
in its internal node, and split examples based on dissimilarity between a pair of time-series or impurity between
cross-sectional attributes. Dissimilarity between a pair of time-series is defined by dynamic time warping method or
in financial time-seires by indexing dynamic time warping method. Experimental results with stock price prediction
confirm that our method constructs interpretable and accurate decision trees.
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L(x, aj , θi) = {(y, x)|DTW (x(aj), xi(aj)) < θi}

R(x, aj , θi) = {(y, x)|DTW (x(aj), xi(aj)) ≥
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Algorithm 1 DTW distance

1: procedure DTW(x, y)

� Initialize matrix D

2: Var D[N,M ]

3: D[1, 1] = 0

4: for i = 2 to N do

5: for j = 2 to M do

6: D[i, j] = ∞
7: end for

8: end for

� Calculate DTW distance

9: for i = 2 to N do

10: for j = 2 to M do

11: D[i, j] = d(x[i− 1], y[j − 1])

+min(D[i, j − 1], D[i −
1, j], D[i− 1, j − 1])

12: end for

13: end for

14: return D[N,M ]

15: end procedure
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F (x) = f0(x) + f1(x) + ...+ fM (x) (1)

L(y, F (x)) fm(x)

F0(x) = f0(x)

m m

L(y, F (x))

Fm(x) = Fm−1(x) + fm(x) (2)

Algorithm 2 Gradient Boosting Tree

1: procedure Gradient Boosting Tree(y, x)

� Initialize F0 with a constant

2: F0(x) =
∑N

i=1
arg min

c

(yi, c)

3: for m = 1 to M do

4: rim = −[L(yi,F (xi))
F (xi)

]F (x)=Fm−1(xi−1)

� Fit a decision tree to predict targets rim
5: f(x) = FitTree(rim,x)

6: ρm = arg min
ρ

∑N

i=1
L(yi, Fm−1(x) + ρf(x))

7: Fm(x) = Fm−1(x) + γρmf(x)

8: end for

9: return F (x) =
∑M

m=1
Fm(x)

10: end procedure
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Algorithm 3 StandardExSplit with Cross-Sectional Data

1: procedure Split({y1, ..., yn}, {x1, ..., xn})
2: for each samples xi do

3: for each attribute aj do

4: if attribute aj is time-series then

5: for each samples xk do

6: L(x, aj , θi)

7: = {(y, x)|DTW (xi(aj), xk(aj)) < θk}
8: R(x, aj , θi)

9: = {(y, x)|DTW (xi(aj), xk(aj)) ≥ θk}
10: G(L,R, θi)

11: = |L|
|L+R|H(L) + |R|

|L+R|H(R)

12: end for

13: else

14: L(x, aj , θi) = {(y, x)|x(aj) < θi}
15: R(x, aj , θi) = {(y, x)|x(aj) ≥ θi}
16: end if

17: G(L,R, θi) =
|L|

|L+R|H(L) + |R|
|L+R|H(R)

18: end for

19: end for

20: θ∗ = arg min
θ

G(L,R, θi)

21: return best split θ∗

22: end procedure
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1: Time-Series Tree with Cross-sectinal Data

Indexing Dynamic Time Warping(IDTW)

IDTW 1

DTW

(Algorithm4)

Algorithm 4 IDTW distance

1: procedure IDTW(x, y)

� Scaling data

2: Var Ix, Iy � Initialize Ix,Iy

3: Ix[1] = 1, Iy[1] = 1

4: for i = 2 to N do

5: Ix[i] = Ix[i− 1] x[i]
x[i−1]

6: end for

7: for j = 2 to M do

8: Iy[j] = Iy[j − 1] y[j]
y[j−1]

9: end for

� Apply DTW

10: return DTW (Ix, Iy)

11: end procedure
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2: Total Return of TOPIX,k*-NN,Time-Series Decision

Tree and Time-Series Gradient Boosting Tree.

1: Precision, Recall and F-Score of k*-NN

precision recall f1-score support

Down 0.62 0.52 0.57 65

Up 0.69 0.77 0.73 91

avg/total 0.69 0.77 0.73 156

2: Precision, Recall and F-Score of Time-Series Decision

Tree(with CS)

precision recall f1-score support

Down 0.49 0.65 0.56 65

Up 0.67 0.52 0.58 91

avg/total 0.60 0.57 0.57 156

3: Precision, Recall and F-Score of Time-Series Gradient

Boosting Decision Tree(with CS)

precision recall f1-score support

Down 0.55 0.65 0.59 65

Up 0.71 0.62 0.66 91

avg/total 0.64 0.63 0.63 156

4: Accuracy of Each Method

k*-NN TSTree TSGBTree

TS 66.67% 54.49% 66.02%

TS+CS - 57.05% 62.82%
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