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The fluctuation of an RR interval (RRI) on an electrocardiogram (ECG) is called heart rate variability (HRV).
Since HRV reflects the activities of the autonomous nervous system, HRV has been used for many kinds of health
monitoring systems. However, HRV is easily influenced by arrhythmia, which prevents the precise health moni-
toring. The present work focuses on premature ventricular contraction (PVC) which is common arrhythmia. To
modify RRI data with PVC, the present work proposes a new method based on denoising autoencoder (DAE),
referred to as DAE-based RRI modification (DAE-RM). The performance of DAE-RM was evaluated by its ap-
plication to clinical RRI data which contains artificial PVC (PVC-RRI). The root mean squared error (RMSE) of
modified RRI was improved by 83.5 % from PVC-RRI. The result showed that DAE-RM could modify PVC-RRI
data appropriately. The proposed DAE-RM has potential for realizing precise health monitoring systems which
use HRV analysis.
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Algorithm 1 DAE-RM

1: while do

2: Collect the newly measured tth RRI xt.

3: Store xt to the buffer in the FIFO manner.

4: if PVC detection then

5: Wait the next t+1th to t+T+P−1th RRI xt+1, · · ·,
xt+T−1, · · ·, xt+T+P−1.

6: Extract the previous P RRI xt−P , · · · , xt−1 from

the buffer.

7: Construct the RRI subsequence to be modified:

xs = [xt−P , · · · , xt, · · · , xt+T−1, · · · , xt+T+P−1].

8: Calculate the mean of xs, x̄s.

9: xs = xs − x̄s.

10: Get the modified RRI subsequence x̂s by inputting

xs to the trained DAE.

11: x̂s = x̂s + x̄s.

12: d =
∑

x̂s −
∑

xs.

13: Take the last element of xs, x̂
e
s.

14: x̂e
s = x̂e

s − d.

15: Replace xs to x̂s

16: else

17: Wait until the next RRI data xt+1 is measured.

18: end if

19: end while
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