
補助重み法によるニューラルネット上での特徴選択と過適応防止
Feature selection and over-adaptation prevention in neural networks using the auxiliary weight

method

野田 陽 ∗1
NODA Akira

∗1島津製作所 基盤技術研究所
Technology Research Laboratory, Shimadzu Corporation

In this study, we propose a method called auxiliary weight (AW) for neural networks in which each input value
is weighted according to its contribution to the input dimension. AW is similar to Lasso regularization in the
sense that it can extract features; however, AW is faster than Lasso in processing data that contains a several
contributing dimensions and massive non-contributing dimensions, such as the data of medical mass spectrometry.

1. Introduction

In applications of discrimination using a chemical ana-

lyzer, such as in disease diagnosis using a mass spectrome-

ter (MS), the input data generally contains a large number

of dimensions and a high level of independence. Therefore,

feature extraction is often performed by the partial differen-

tial of a neural network (NN) [?] or by Lasso regularization.

In the field of medicinal chemistry, feature extraction is ap-

plied for biomarker candidate discovery. It is important not

only to understand the reactions that occur in disease but

also to prevent over-adaptation. In this study, we propose a

novel method, which is called the auxiliary weight (AW∗1)
method in which each input dimension is multiplied by a

weight based on its degree of contribution to the output of

NN.

2. About Input Data

MS is an analytical device that is used to output an

intensity value that correlates with the concentration of

molecules having a certain mass-to-charge ratio (m/z). ∗2

Thus, in the obtained data, the concentration information

regarding one or few molecular species is provided in a single

dimension. Therefore, the independence of each dimension

is observed to be high. The MS spectrum contains approx-

imately 1000-100000 dimensions and one to several tens of

these dimensions are observed to contribute to the diagno-

sis of a disease. In the diagnosis of several diseases, the

discriminant function is nonlinear. Hence, discrimination is

often performed using SVM(Support Vector Machine), and

feature selection is often performed using SVMRFE(SVM

recursive feature elimination) [?].

2.1 Simulation data
In this study, we use relatively simple simulated data.

The input data is a 1000-dimensional vector of random
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∗1 Code: https://bitbucket.org/akira_you/awexperiment.
∗2 MS-data is expressed as a vector in which the length covers

the m/z range, whereas the elements denote the signal inten-
sities at each value of m/z.

numbers that depict a normal distribution. The training

labels are provided on the basis of an equation, 1. Twelve

of these dimensions of simulation data are contributing to

the training label.

Label = (Boolean)(y < 0)

y = (x1 + 0.5)(x2 − 0.4)(x3 + 0.3) (1)

+(x4 + 0.25)(x5 − 0.15)(x6 + 0.05)

+(x7 + 0.3)(x8 − 0.2)(x9 + 0.1)

+(x10 − 0.2)(x11 + 0.1)x12

Fig. 1 depicts the logarithmic p-value using the t-

test for each dimension. Although twelve dimensions

(20, 30, · · · , 130 on the horizontal axis) contribute to the

discrimination process, it can be observed that only three

of them (indices 20, 30, and 40) can be identified using the

t-test.

The dashed line indicates the contributing dimension.

Fig. 1: Log p-value of each dimension

3. Method

3.1 AW method
In the AW method, weights are applied to each dimen-

sion of the input data. The outputs of the AW layer are

inputted to the NN, f(x) (Fig.2). The AW method is sim-

ilar to the Lasso method such that the weights of the di-

mensions that provide no contributions are zero; however,
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the AW method contains an additional loop to update each

weight based on the degree of contribution. The degree of

contribution, gi, of each dimension is calculated using the

norm of ∂f(xi)/∂xi, which is obtained using a mini-batch.

Further, gi is normalized such that |G| = 1. Each weight-

ing coefficient, ai, of the AW layer is updated by ai∗ = gui ,

where u is the update rate parameter and is usually set to

approximately 0.1. The AW layer and f(x) are updated

alternately. For the dimensions that depict large contribu-

tions, the input value is increased during the AW-update.

Further, in the next batch, an NN-update of f(x) is per-

formed so that the contribution degree of the dimension be-

comes smaller. Finally, the contribution degrees of all the

dimensions become equal to one. Thus, the AW-weights of

the dimensions with no contributions become zero. AW can

also be considered to be dynamic normalization. In several

situations, medical MS data is normalized according to the

variance, which may be caused by a disease (the target of

interest in this technique) or may be caused due to the natu-

ral differences between various patients. Before conducting

learning on the network, there is no information that which

variance is caused by disease. In AW, data is normalized to

the contribution degrees rather than to the variances. The

contribution degree is defined using the NN and the learned

parameters. Thus, the weights and NN must be updated

alternately.

Fig. 2: The AW network model

3.2 Stochastic invalidator
The contributing dimensions can be extracted using the

AW method. However, if there are massive random-number

dimensions in the input, it is difficult to discern their con-

tributions due to over-adaptation and contribution due to

true discrimination. Several dimensions are required for

over-adaptation by random values, the number of which is

correlated with the numbers of the training data. However,

in case of disease diagnosis and similar applications, only a

few dimensions contribute because a disease may be caused

due to a partially abnormal metabolism or because only a

few chemical substances are affected by the condition.

Therefore, we intended to limit the dimensions that were

contributed by the entanglement of multiple dimensions

by implementing stochastic invalidation (SI) in the AW

method. SI stochastically gates the output of the AW layer

according to the value of ai for each mini-batch. In this

Algorithm 1 AW update during the back-propagation of

NN
1: while all epochs are incomplete do

2: G ← 0;

3: for i in range(Ba/Bn)

4: //Normal back-propagation

5: x ← A ◦D[i];

6: y ← forward(x);

7: grad ← backword(∂|Softmax(y)− L[i]|/∂y));
8: [update the NN parameters by grad]

9:

10: //Summing the degrees of contribution

11: G+ = |∂f(x)/∂x|;
12: end for

13: G/ = |G|;
14: ai∗ = gui ;

15: end while
Where: Ba is the batch size for the AW, Bn is the batch size for the NN,
D is the input data batch array, L contains the labels, ai is the weight of
the AW layer, A is is a vector of ai u is the update rate, ◦ is the element-
wise product, and grad represents the gradient for all variables.
Note:∂f(x)/∂x can be obtained by backword(1)

study, the value of ai is compared with a random number,

N(0, 2.5σi), which was generated according to a normal dis-

tribution, where σi is the average of all the values of ai.

Further, ai is replaced by zero if it is smaller than the ran-

dom number. For example, consider a set of dimensions,

d1, d2, ..dN , with over-adaptation and a gate-open proba-

bility of p1, p2, ..pN . The joint probability,
∏

pi, decreases

exponentially with respect to the required number of dimen-

sions, thereby sharply decreasing the learning opportunities

of these dimensions.

Algorithm 2 Stochastic invalidator

1: P ← 1;

2: while all epochs are incomplete do

3: for i in range(Ba/Bn)

4: x ← P ◦A ◦D[i];

5: [NN update ]

6: [Summing the degrees of contribution]

7: end for

8: [Update A]

9: ave ← ∑
i
ai/N

10: hi ← N(0, ave ∗ 2.5)
11: pi ← 0 if(ai < hi) else 1

12: end while
where P is the 0/1 filter for each input dimension, A is the weight for the
AW, D is the input data batch array, and N is a random vector that is
generated according to a normal distribution.

4. Experiment

Three analytical methods - no AW, with AW, and with

AW and SI - are compared on fully connected NNs that

depict the following grid-searched hyper-parameters:

• Number of middle layers: (5, 6)

• Dimension of the middle layer: (100, 300)
• Dimension of the first layer of the middle layers:

(1000, 2000)
• Lasso: (0, 1e− 5, 1e− 6)
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• Lasso (AW) :(0, 1e− 3, 1e− 4, 1e− 5)

• Batch size: 800 / AW batch size: 2400

Lasso (AW) was applied to weights of AW when AW was

valid and was applied to the first layer of the middle layers

for the ‘No AW’ case. The number of training data was

27000, and the number of test data was 3000. Fig.3 depicts

the accuracy that was observed during the three repeats of

the experiment.

‘AW+SI’ provides high accuracy during the early epoch.

Fig.4 depicts the results of feature extraction. These are

the AW weights (or the weights of the L2 norms of the first

layers). These observations illustrate that the use of AW

alone or AW with SI results in the successful extraction of

all twelve features, whereas the use of Lasso alone, without

using AW, results in the extraction of only six features.

5. Conclusion and Future work

AW can be used with or without SI to perform feature ex-

traction and prevent over-adaptation more effectively than

the performance of Lasso when there are massive non-

contributing dimensions. This technique will be useful for

searching the biomarkers and for conducting diagnostics us-

ing medical MS.

In this study, only the simulated data was analyzed. How-

ever, in actual medical data, the number of data will be low.

Therefore, the extracted features will not be very accurate.

It is necessary to consider these differences while observing

the extraction results of each cross-validation and conduct

verification process based on the knowledge of human phys-

iology.

Fig. 3: Accuracy (Test)
Parameters (#of Mid, Mid.Order, 1stMid.Order, Lasso, LassoAW) are
No AW: (5, 300, 2000, 1e-6, 1e-5), (5, 100, 2000, 1e-5, 1e-3), (6, 100,
2000, 1e-5, 1e-4)
AW: (5, 300, 2000, 1e-6, 1e-4), (6, 100, 1000, 1e-5, 1e-4), (5, 300, 2000,
1e-6, 0)
AW+SI: (6, 300, 2000, 1e-5, 1e-3), (6, 300, 1000, 1e-5, 1e-3), (6, 300,
2000, 1e-5, 1e-3)

Fig. 4: Feature extraction result
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