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In sightseeing information navigation systems, the information presented by natural language has a potential to
improve usability. Several systems tried to embed the informing contents in a prepared template for generating
sentences which are useful for tourists, which is called a slot filling based method. However, it is difficult for the
systems to generate diverse expressions and unseen patterns. To solve this problem, we propose a neural network
based sentence generation method instead of using a slot filling based method. In this research, we construct the
contents as a one-hot vector representation and construct the neural network based language generator and the
one-hot content vectors for generating natural and understandable sentences. We collected a tourist information
corpus via crowdsourcing. Existing language generation systems used word classes. However, these systems often
connect words unnaturally. In this research, we also proposed a re-ranking system based on a neural language
model to solve the problem. In our experiments, we confirmed the naturalness and validity of the sightseeing
guidance sentences generated by our proposed method.
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[Cho 14] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,

Bougares, F., Schwenk, H., and Bengio, Y.: Learning phrase represen-
tations using RNN encoder-decoder for statistical machine translation,

arXiv preprint arXiv:1406.1078 (2014)

[Conroy 01] Conroy, J. M. and O’leary, D. P.: Text summarization via

hidden markov models, in Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in information re-

trieval, pp. 406–407ACM (2001)

[Dale 03] Dale, R., Geldof, S., and Prost, J.-P.: CORAL: Using Natural

Language Generation for Navigational Assistance, in Proceedings of the
26th Australasian Computer Science Conference - Volume 16, ACSC ’03,

pp. 35–44, Darlinghurst, Australia, Australia (2003), Australian Com-

puter Society, Inc.

[Kondadadi 13] Kondadadi, R., Howald, B., and Schilder, F.: A Statistical

NLG Framework for Aggregated Planning and Realization., in ACL (1),

pp. 1406–1415 (2013)

[Murakami 17] Murakami, S., Watanabe, A., Miyazawa, A., Goshima, K.,

Yanase, T., Takamura, H., and Miyao, Y.: Learning to Generate Market
Comments from Stock Prices, in Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Pa-

pers), Vol. 1, pp. 1374–1384 (2017)

[Sripada 03] Sripada, S., Reiter, E., and Davy, I.: SumTime-Mousam:

Configurable marine weather forecast generator, Expert Update, Vol. 6,

No. 3, pp. 4–10 (2003)

[Tumas 09] Tumas, G. and Ricci, F.: Personalized mobile city trans-

port advisory system, Information and Communication Technologies in

Tourism 2009, pp. 173–183 (2009)

[Venkataiah 08] Venkataiah, S., Sharda, N., and Ponnada, M.: A Compar-

ative Study of Continuous and Discrete Visualisation of Tourism Infor-

mation, pp. 12–23, Springer Vienna, Vienna (2008)

[Wen 15] Wen, T.-H., Gasic, M., Mrksic, N., Su, P.-H., Vandyke, D., and

Young, S.: Semantically conditioned lstm-based natural language gen-
eration for spoken dialogue systems, arXiv preprint arXiv:1508.01745

(2015)

[Zhang 14] Zhang, X. and Lapata, M.: Chinese Poetry Generation with

Recurrent Neural Networks., in EMNLP, pp. 670–680 (2014)

[ 16] , , , , , , ,

, , Vol. 57, No. 3, pp.

849–862 (2016)

4

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

2K1-03


