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In manipulation tasks, it is extremely costly for a human to manually create a program such as the complex
motion like a human arm. On the other hand, learning manipulation tasks using machine learning has a huge
range of actions, so it is difficult for robots to learn without demonstrations by a human. For these reasons, it is
required for robots to learn motions smoothly using human demonstrations. In this research, based on Generative
Adversarial Imitation Learning (GAIL) which is a representative method of Learning from Demonstrations (LfD)
in recent years, we propose the method that can learn manipulation actions in the simulation environment by newly
using task achievement rewards. As a result, the proposed method succeeded in learning the policy of manipulation
task which was difficult to learn in the existing models.
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Algorithm 1 TRGAIL

1: Input: τE ∼ πE , Discriminator

θ0, w0

2: for i = 0, 1, 2, . . . do

3: τi ∼ πθi

4: Discriminator :

Eτi [∇w log(Dw(s, a))] + EτE [∇w log(1−Dw(s, a))]

wi

wi+1

5: Generator :

Eτi [∇θ log(min (rt(θ), clip (rt(θ), 1 + ε, 1− ε))Q(s, a))]

−λ∇θH(πθ)

Q(s, a) = Eτi [α log(Dwi+1(s, a) + (1− α)Rtask(s, a)]

PPO

θi θi+1

6: end for
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3: Pusher 4: Striker 5: Thrower

1:
Pusher Striker Thrower

Expert Policy -0.0006 93.2 -0.0095 87.1 -0.0077 79.3

Random Policy -0.1675 0.5 -0.6365 0.0 -0.8586 0.2

Behavior Cloning -0.1418 25.0 -0.1346 33.0 -0.0092 81.0

GAIL -0.1975 9.4 -0.6466 6.9 -0.0535 28.0

TRGAIL -0.0004 92.3 -0.0270 79.7 -0.0082 91.6
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