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Migrating large-scale information system as a whole is impossible due to its size, thus it is necessary to divide the
system into manageable migration units. Typically, optimizing the migration units can only be done by experienced
engineers, and takes large amount of time. In this paper, we propose a method finding optimal migration units. To
find optimal migration units, we interpret CRUD relations between functions and tables as a graph structure, and
adapt semi-supervised graph neural network, Diffusion Convolutional Neural Networks, with a graph embedding
method. Furthermore, we unify CRUD relation with file arrangement information and attributes of each node. In
experiments, the proposed methods find practical migration units that can be applied to real examples.
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3.1
CRUD

[Reichardt and Bornholdt 2006]

[Talukdar et al. 2008]

[Atwood and Towsley 2016, Kipf and Welling 2017]

Kipf Graph Convolu-

tional Network

[Kipf and Welling 2017] Atwood diffusion pro-

cess Diffusion-Convolutional Neural Network

(DCNN) [Atwood and Towsley 2016]

CRUD

DCNN

DCNN

Z = f(W c � P ∗X) (1)

Y = argmax(f(W d � Z)) (2)

W c,W d H×F X N×F

Z diffusion-convolutional

activation N ×H ×N N

F H P ∗

P P ∗
ijl = P j

il

i l j

DCNN diffusion
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node2vec word2vec

[Mikolov et al. 2013]
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