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Recently, the icreasing interest in the social media networking service (SNS) is remarkable. Many researchers
work for the discovery of new information from the posted tweets. In this study, we focus on the tweets related
to tourist spots for finding the spot’s improvement and appeal point. However, tweets on Twitter site include not
only descriptions that are related to sightseeing but also descriptions that are not related to sightseeing. As the
solution, we use convolutional neural networks for classifying these tweets. Moreover, we propose the multi-channel
method to improve the performance of classification. In this method, the model was passed two test information
that is words and form classes. In experiments, several models are used for comparing each other, Naive Bayes,
convolutional neural networks (CNN), long short-term memory, and the proposed model. The experimental results
show that the proposed model can classify tweets better than the other models.
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2: (OI −ONI )
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