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GPGPU is a parallel computation technology using GPU that has huge number of processor cores for parallelly
calculating colors of pixels on a monitor. Owing to its parallel performance, GPGPU is being used for multiagent
simulation that contains multiple independent but interdependent agents. In a previous work, we used GPGPU
to parallelize many runs of reinforcement learning agents for calculating their fitness in a simulation of evolution.
It speeded up the simulation surprisingly. However, the evolution part was sequentially run in CPU and the
communication between CPU and GPU happened in every generation. Hence, this work uses GPGPU to parallelize
the evolution part in addition to the fitness calculation. It makes the simulation even faster due to parallelism and
the reduction of latency between CPU and GPU.
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