
GPGPU

Parallelization of evolution of reinforcement learning agents using GPGPU

∗1
Yoshiki Senga

∗1
Koichi Moriyama

∗1
Atsuko Mutoh

∗2
Tohgoroh Matsui

∗1
Nobuhiro Inuzuka

∗1
Department of Computer Science, Graduate School of Engineering, Nagoya Institute of Technology

∗2
Department of Clinical Engineering, College of Life and Health Sciences, Chubu University

GPGPU is a parallel computation technology using GPU that has huge number of processor cores for parallelly
calculating colors of pixels on a monitor. Owing to its parallel performance, GPGPU is being used for multiagent
simulation that contains multiple independent but interdependent agents. In a previous work, we used GPGPU
to parallelize many runs of reinforcement learning agents for calculating their fitness in a simulation of evolution.
It speeded up the simulation surprisingly. However, the evolution part was sequentially run in CPU and the
communication between CPU and GPU happened in every generation. Hence, this work uses GPGPU to parallelize
the evolution part in addition to the fitness calculation. It makes the simulation even faster due to parallelism and
the reduction of latency between CPU and GPU.

1.

GPU

GPGPU

GPU CPU

CPU

GPGPU CPU GPU

CPUGPU

[1] GPU CPUGPU

2 GPGPU

[2]

GPGPU

GPU

CPUGPU 2

2. General-Purpose computing on
GPU (GPGPU)

2.1 GPU
GPU

CPU CPU 4 64

GPU

1000

VRAM GPU

CPU

:

y.senga.381@stn.nitech.ac.jp

GPU 1 SIMD(Single

Instruction Multiple Data)

. CPU GPU GPU

GPU

2.2 GPGPU
GPGPU GPU

GPGPU

2008 NVIDIA CUDA

GPU

GPGPU Khronos Group

OpenCL CUDA NVIDIA GPU

OpenCL NVIDIA AMD

GPU Intel CPU

3.

Q Q

3.1
2 2 2

A B C( ) D( )

1 T R P S ∈ R

T R P S

T > R > P > S

B C A C R D

T A D

1

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

2P1-03



1:

A\B C D

C R R S T

D T S P P

B D A C

S D P A D

A B

D B

(D D)

P

C R R > P

2R > T + S

D

C

3.2 Q
t st ∈ S

π at ∈ A(st) S

A(st) st
rt+1 ∈ R

st+1

Q [3] π∗ Q∗

Q Q∗

Qt+1(s, a) =

{
Qt(st, at) + αδt if(s, a) = (st, at)

Qt(s, a) otherwise

δt ≡ rt+1 max
a∈A(st+1)

Qt(st+1, a)−Qt(st, at)

α 0 < α ≤ 1

γ 0 ≤ γ < 1

δt TD (Temporal-Difference) Qt(s, a)

π∗ Q∗ 0

Q Qt(s, a) Q∗(s, a)

αt

0 ni(s, a) i (s, a) = (st, at)

t

∞∑
i=1

αni(s, a) = ∞
∞∑
i=1

[αni(s, a)]
2 < ∞, ∀s, a

Q∗ s

a∗

a∗ = argmax
a′∈A(s)

Q∗(s, a′)

1: u(r)

Qt

ε-greedy

ε-greedy 1− ε

Qt ε

Q [4]

u Q

r

3.3 Q

2

Q

[4]

r u(r)

T R P S 1

u(R) > u(T ) and u(S) > u(P ) and u(R) > u(P )

C

u ≡ u(r) ≡ ar3 + br2 + cr + d

a b c d

(GA)

N G

1. N

2. N 2

Q

3. 2

4.

5. 2 4

2

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

2P1-03



2: work item work group

4. GPGPU

[2] 3

GPGPU

GA CPU

GA

GPU

GPU

CPU

GA

2 CPU GPU GA

GPU

CPUGPU GA

GPU 2

GPGPU

OpenCL[5] OpenCL

work item work group work

item work group 2

• work item: OpenCL

work item

work item

• work group: work item

work group

GA [6]

GPGPU GA

GA

3:

work group work group work

item work group 1

N work group 3

1. GPU

2. GPU

3.

4. Pc

5. Pm

6.

7. K

5%

8. 2 6

9. GPU CPU

CPU CPU

GPU

GPU

5.

2

T = 5 R = 3 P = 1 S = 0 Q

α = 0.25 γ = 0.5 ε = 0.05

Pc = 0.9 Pm = 0.01

3

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

2P1-03



2: CPU GPU

CPU Intel Xeon E5-2650 v4 2

GPU GeForce GTX 1080 1

4:

5.1

[4]

100 100

1 1000

10000 100

2.7

4 100

100 75

2.7 [4]

2.7 8

GPGPU GA

5.2

100

1000 1000 K 5

100

100 1

5

GA

GA 2

CPU GPU N

GA 4

N

id N(N − 1)

GA GPU

.

GA

GA work item

5:

CPU GPU

CPUGPU GA

6.

GPGPU

GPU CPUGPU

GA 2

GA

JSPS JP16K00302

[1] GPU ,http://www.

gdep.jp/page/view/248, (2018 2 1 )

[2] :GPGPU 2

79 2017

[3] Christopher J.C.H. Watkins and Peter Dayan: Tech-

nical Note: Q-learning. Machine Learning, Vol. 8,

pp. 279–292, 1992

[4] Koichi Moriyama, Satoshi Kurihara, and Masayuki Nu-

mao: Evolving Subjective Utilities: Prisoner’s Dilemma

Game Examples. Proc. 10th International Conference

on Autonomous Agents and Multiagent Systems (AA-

MAS), pp. 233–240, 2011

[5] The OpenCL Specification Version 2.2 Revision 06,

https://www.khronos.org/registry/OpenCL/specs/

opencl-2.2.pdf, 2016

[6] : ”

” 2008

4

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

2P1-03


