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Deep Q Network (DQN) is a reinforcement learning method using deep neural network to approximate Q-
function. Literature tells us that DQN can choose better actions than humans. However, it needs much time to
learn such actions. DQN learns its actions by using tuples of (state, action, reward, next state), called experiences,
sampled from its memory. DQN samples them uniformly randomly, but the experiences are skewed. It results in
slow learning because frequent experiences are redundantly sampled while infrequent ones hardly.

This work mitigates the problem by weighting experiences based on their frequency and manipulating their
sampling probability. In a video game environment, the proposed method learned good actions faster than DQN.

1.

[1]

[2]

Deep Q

Network(DQN)[3][4] DQN Atari2600[5]

DQN

DQN

:

k.murakami.638@nitech.jp

2. Deep Q Network

2.1 Deep Q Network
Deep Q Network(DQN) s

Q

ReplayMemory

ReplayMemory M

Q

Experience Replay NIPS DQN[3]

1 1 f

t r

E

Nature DQN[4]

2 Nature DQN

DQN Nature

DQN

•
Q

Q

s

Q

Q

s

ti =

{
ri (fi = True)

ri + γmaxa′
i
Qtarget(s

′
i, a

′
i) (fi = False)

Qtarget

1

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

2P2-01



•
1 Q

1 1

e′i
e′i

ei = ti −Q(si, ai)

e′i =

⎧⎪⎨
⎪⎩

1 (ei ≥ 1)

ei (−1 < ei < 1)

−1 (ei ≤ −1)

1: NIPS DQN

2.2 Deep Q Network
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