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In real-time strategy games, it is difficult for a computer to defeat a human player under the condition that the
computer has same recognition ability to the player. It is because many factors in the environment are changing
in a very short time during which the computer has to choose an action. Although the Monte Carlo Tree Search
(MCTS) algorithm obtains decent results in such games by searching a good action from simulation, it will be
better if it has more time. On the other hand, it may be worse due to delay of response to the environment. In
this work, we investigated the trade-off property in a fighting video game.
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1: FightingICE
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