

- 1 -

 3D L-Systems Path-finding

Case study: Walking Agent’s Explorations in Simulations
 Djuned Fernando Djusdek*1 Yoshiteru Ishida*1

 *1 Toyohashi University of Technology

This paper presents a technique for exploring map or surface using extended L-Systems based on L-Systems’ grammar, other
than L-Systems rules, we need this derivative rule for exploring a walkable area. The rule that used is flipping approach, which
is a technique for changing the angle of generating grammar, then will impact the direction. The results are validated and done
in simulation systems.

Lindenmayer Systems or L-Systems [Lindenmayer 1968] is a
great invention, not only for representing a simple living object,
yet can for representing plants. Inspired by biological systems, L-
Systems was developed more, i.e., Stochastic L-System and
Context-sensitive L-Systems, which is used for represented plant
more natural. Not only that, by combining L-System with Genetic
Algorithm (GA), the plant representation is unique [Prusinkiewicz
1990] [Ochoa 1998] [Kurth 2007].

Even more than that, recent L-Systems is also used for the path-
finding solver. Some research was published, e.g. [Areyan 2012].
In this research, they use Ants Colony as a base algorithm,
combined with Genetic Algorithm. In case of uses share memory
“stigmergic” that ants left as pheromones, also uses individual
memory that contained in its genetic information. This genetic
information stored as genes and represented by simple L-Systems'
grammar.

However, not available yet for exploring the map, which has no
route or path, e.g., Mars’s surface. In this research, we implement
a 3D exploration’s simulations for walking agents path-finding
solver in an unexplored land. This research objection is used L-
Systems for path-finding. Hopefully, this research can support
human for exploring the unexplored land.

The rest of this paper is structured as follows. Section 2
describes the previous research which relates to L-Systems path-
finding. Section 3 presents the method we propose which the
simulation and experimental result is provided in Section 4 and 5.
Finally, the conclusion is drawn in Section 6.

This research uses Cellular Automaton (CA) and combines it
with L-Systems. Related to [Alfonseca 2003], in this research was
explained the formal definitions of deterministic and probabilistic
CA, with special attention to the problem of updating the
probabilistic information each automaton in the grid. In this article,
also introduced a formal notation for probabilistic L-Systems and
the language generated by them.

For support this research, there is another research, e.g.
[Koopman 2016], that try to solve path-finding in 3D space for the
indoor environment. Many path-finding algorithm and approach
discussed in this research. Concluding to use voxel location, and
use “voxelized" model for representing a 3D indoor environment.
The agent also divided into several types, i.e., walking and flying
agents.

Rather than focus on an existing problem like exploration by
robots, e.g. [Shen 2012], we focus on algorithms to explore
unexplored land in simulations. In this related work, the
autonomous flying vehicle was used as agents for indoor
exploration.

Moreover, about L-Systems exploration, this problem can be
classified as space-filling curve problems. Described in [Nair
2017], they also done exploration task by implementing a systemic
strategy for Hilbert’s space-filling curve. The exploration task is
to find obstacles (or holes) and implemented online, and their
future goal is to use it for path planning and searching.

As described in related work, we use L-Systems with CA to
solve this problem and related to our previous work [Ishida 2017].
The environment that used is simulation systems that have been
developing in OpenGL using Qt wrapper. The simulation
environments are used to simulate a small world, i.e., land or
island(s).

Contact: Djuned Fernando Djusdek, Toyohashi University of
Technology, 1-1 Hibarigaoka Tempaku Toyohashi Aichi
441-8580 JP, +81 80 9986 4087, djuned@sys.cs.tut.ac.jp

Figure 1. The Pseudocode of Height-map Loader.

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

2P2-04

- 2 -

In this case, we use a height-map as input for generating the land
surface. This surface will see as a plain land without anything,
except water area, i.e., a sea. The pseudocode for load the height-
map is described in Fig. 1. For enriching the surface, we use Game
of Life [Gardner 1970] for distributing the tree(s), and by
randomly generated seed, and combining with the height of areas
that can be placed, i.e., walkable area. The constraint to
determining the walkable area is defined in Eq. 1, while the h is
the height of the walkable area.

waterArea < h < mountainArea (1)

L-Systems' grammar that used shown in Fig. 2. This grammar

produces four directions in the beginning and will create a branch
on each iteration. In the generating steps on each direction, will be
generate a branch like described in Fig. 3, that A is equal to 1/4
from B and B is equal to 3/4 from start point in each iteration, and
A plus B is equal to F. Either A, or B will produce new F and do
similar way in each iteration. This grammar will ensure that four
directions will be explored.

However, this grammar cannot guarantee that all areas will be
explored if there are obstacles. To solve this problem, we
introduce a flip approach to change the angle for branching
implementation. The flipping technique causes the branch to grow
left and then right in continues iteration, with some rules. This
approach can guarantee almost all walkable area will be explored.

In this research, L-Systems is mainly used to predict the next
point and the edge that is connecting from the current point, i.e.,
vertex, to the next point. This step is done by using CA. At this
step, the CA try to connect a vertex by uses heuristic function to
determine the path, which is possible to passing or not. If not
appropriate, we need to move to the next point as near as possible
from the previous position of next point. The pseudocode for this
algorithm is described in Fig. 4, and the steps for creating edge is
described in Fig. 5.

Different from [Nair 2017], in this previous research, the
algorithm is based on Hilbert’s space-filling curve, where just
have one start and one endpoint. They modified Hilbert’s space-
filling curve so can do in space, which has obstacles (or holes).
Comparing with this research, our approach cannot reach all area
in space, i.e., walkable area. However, our approach can be run
concurrently and independently, but still depend on the neighbor
in each cell, i.e., point, when generating the path.

The simulation systems built in MacBook Pro 2017 and Acer
M5 481TG, this will ensure that our simulator can run in multi-
platform. The specifications for this simulation systems are
described:

In this research, the simulation built to focus on:
• MacBook Pro (13-inch, 2017), with specifications:

Processor: 3.1 GHz Intel Core i5-7267U
Memory: 8 GB 2133 MHz LPDDR3
Graphics: Intel Iris Plus 650 1536 MB

• Acer M5 481TG, Windows 10, with specifications:
Processor: 1.7 GHz Intel Core i5-3317U

Memory: 6 GB DDR3 SDRAM
Graphics: Nvidia GeForce GT 640M LE 1 GB

This simulation system builds on:
• Mac OS 10.13 High Sierra & Windows 10 Home;

Figure 2. The L-Systems’ Grammar.

Figure 3. The L-Systems’ Grammar in action.

Figure 4. The Pseudocode of Path-maker.

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

2P2-04

- 3 -

• Qt Creator 4.4.1, based on Qt 5.9.2 (Clang 7.0 (Apple), 64
bit) for Mac OS;

• Qt Creator 4.5.0, based on Qt 5.10.0 (MSVC 2015, 32 bit)
for Windows;

• Modern OpenGL Shading Language (GLSL), which is
implemented in Qt wrapper and native function; and

• Modern C/C++ programming language.

The experiments were running on MacBook Pro and Acer M5
481TG too, with similar specifications.

The parameters in detail:
• Game of Life generations (iterations) for determining tree(s)

locations;
• The seed is for initiating Game of Life will be generated

randomly. For experiment will be statically defined;
• The fixed location for start point S;
• The fixed locations for destination object D;
• Height-map that will be used;
• The height divider div for height-map to 3D;
• The walkable area constraint;
• The length F;
• The angle θ; and
• The maximum-paths that will be shown.

The environments were built refer to the approach that
described in methodology, with some characteristics:

• Generated in the first run and uses the defined parameters;
• The trees, the destination and the initial point will generate

by using the results of Game of Life map, which reduces to
1:5. So, in 5x5 points area will draw only one tree or
destination’s object or start point R for L-Systems;

• The destination is blindly known by R. The area for the
destinations’ object is 15x15 points; and

• The solutions paths will be drawn in 3 colors: red, green and
blue.

In this research, we try to run our experiments as general as
possible. First, we compare the result between Mac OS 10.13 and
Windows 10. Second, we will focus on the results of L-Systems'
grammar and this derivative.

To be fair, we consider using the smaller height-map and static
seed for generating the environments. Then for testing the L-
Systems' grammar and this derivative, we will consider the
parameter θ for creating the branch and adding some rules for
growing the paths.

In this sub-chapter, we try to explain briefly about the
experiment result. This experiment used, as described:

• Generation = 324;
• Seed = 0;

1 http://www.rastertek.com/pic4005.gif

• S = 75 (the tree at position 75th will be replaced);
• D = 30 (the tree at position 30th will be replaced);
• The height-map size is 257x257 pixels1. So, the surface will

have size 257x257 points area;
• div = 10.0f (floating points);
• The walkable area constraints:
• Water Area < 1; and
• Mountain Area >= 6;
• F = 4 points (steps);
• θ = 45°; and
• The maximum-paths = 3.

First, we consider the environments that generated in Mac OS
10.13 and Windows 10. As described in Fig. 6 and Fig. 7, the
environments are similar even in the different platform. This
experiment gives a positive result that the paths successfully
reached the destinations. For efficient time usage, we consider
using Mac OS 10.13 for testing the L-Systems' grammar and this
derivative rather than use both.

Consider the Fig 8, the paths also successfully reached the
destinations. However, in Fig. 6, Fig. 7 and Fig. 8 cannot guarantee
that all walkable areas are explored. To solve this problem, we
consider changing the rule for generating branch and focus on

Figure 5. The Path that create by Cellular Automaton.

Figure 6. The Results when running in Mac OS 10.13.

Figure 7. The Results when running in Windows 10.

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

2P2-04

- 4 -

angles that used. Previously, we use similar angle for generating
on each iteration. Then we try to use some mechanism to make the
angle flipping in next iteration and flip again. The flipping is only
from -45° become 45° and vice-versa.

 The results of flipping approach are described in Fig. 9, Fig.
10 and Fig. 11. The first rule that implemented in Fig. 9 is flip, that
means always flipping in each iteration. Than in Fig. 10, the rule
is flip-keep-flip-keep, that means in the first iteration will be
flipping and in the second iteration will similar with the first
iteration, then flip again and so on. Also, in Fig. 11, the rule is
similar with Fig. 10, but the time for flip-keep is different, where
the rule is keep-flip-keep-flip.

From Fig. 9, Fig. 10 and Fig. 11, the positive results are reached
when we use the second and the third rule, which is described in
Fig. 10 and Fig. 11. However, in the Fig. 9, the first rule cannot
explore all area, even to create the path also impossible when
surrounded by obstacles.

Path-finding in an unexplored land is a new area for developing
an L-Systems based path-finding. Many possible solutions and
challenges are still wide open to solve this problem.

The L-Systems' grammar that used was shown, that L-Systems
can be used for exploring the surface. Then, can generate the path
from source to destination. By combining with CA, growing the
paths is more flexible and aware of the environments, which is if
there is an impassable area, e.g., barriers such as a tree(s), or a
visited location, we can reallocate the next point that will be
created into a possible area. However, this grammar cannot
guarantee that all walkable area will be explored. But this problem
was solved by implementing the flipping mechanism that allows
changing the direction of growing branch in each iteration, that
can guarantee almost all walkable area explored.

Future work entails the implementation of GA as L-Systems'
grammar modifier. Then, improve the algorithm so that it can be
applied to the flying agent.

[Alfonseca 2003] M. Alfonseca, A. De la Puente and A. Suárez,
“Cellular Automata and Probabilistic L Systems: An Example
in Ecology,” 2003, 111-120.

[Areyan 2012] E. Areyan, “EvolvingAnts,” School of Informatics
and Computing, Indiana University, 2012, in press.

[Gardner 1970] M. Gardner, “Mathematical Games - The fantastic
combinations of John Conway’s new solitaire game “life””,
Scientific American, 1970, pp.120-123.

[Ishida 2017] Y. Ishida, “Path-finding and path-finding system
based on the extended L-system”, Innovation Japan, 2017.

[Koopman 2016] M. Koopman, “3D Path-Finding in A Voxelized
Model of an Indoor Environment,” TU Delft, 2016.

[Kurth 2007] W. Kurth, “Specification of morphological models
with L-systems and relational growth grammars,” Image –
Journal of Interdisciplinary Image Science, 2007, vol.5.

[Lindenmayer 1968] A. Lindenmayer, “Mathematical models for
cellular interaction in development, Parts I and II”, Journal of
Theoretical Biology 18, 1968, pp.280–315.

[Nair 2017] S. H. Nair, A. Sinha and L. Vachhani, “Hilbert’s
Space-filling Curve for Regions with Holes”, IEEE 56th
Annual Conference on Decision and Control (CDC), 2017.

[Ochoa 1998] G. Ochoa, “On genetic algorithms and lindenmayer
systems,” in International Conference on Parallel Problem
Solving from Nature V, Amsterdam: Springer, 1998, pp. 335-
344.

[Prusinkiewicz 1990] P. Prusinkiewicz and A. Lindenmayer, “The
Algorithmic Beauty of Plants", New York: Springer-Verlag
GmbH, 1990, pp.1-50.

[Shen 2012] S. Shen, N. Michael and V. Kumar, “Autonomous
indoor 3D exploration with a micro-aerial vehicle”,
International Conference on Robotics and Automation (ICRA),
2012, pp.9-15.

Figure 9. The Results when running in Mac OS 10.13 (θ = - 45°, flip).

Figure 10. The Results when running in Mac OS 10.13 (θ = - 45°, flip-

keep-flip-keep).

Figure 8. The Results when running in Mac OS 10.13 (θ = - 45°).

Figure 11. The Results when running in Mac OS 10.13 (θ = - 45°, keep-

flip-keep-flip).

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

2P2-04

