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Discovering new materials that possess on-demand properties is the central demand in every industrial domain. We constructed 
the first material discovery system with end-to-end pipeline consisting of several technical pieces; feature encoding, regression, 
solution search, and structure generation. Those pieces are coordinated to coherently work together by newly defining two 
kinds of feature vectors; data-driven feature and pre-defined feature, and developing an algorithm to generate molecular 
structures by using those feature vectors. The capability of the system to discover new small organic molecules is demonstrated 
by a public dataset of commercial drugs. 
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PSO (Particles Swarm Optimization )
  

  

 

SMILES
  

E1=1.3 eV, T1=117 
E2=2.1 eV, T2=233 

EQ=1.7 eV, TQ=128 

E2EE =2.1 eV, 

E =1.7 eV, EQEE =1.7 eV

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

3E1-02



 

- 3 - 

 

 

 
 

 
 

SMILES

RDKit [GitHub 18]  

ZINC15 FDA-approved drugs
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