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Authentic English passages are not always appropriate for learners due to their vocabulary level; hence teachers
sometimes have to modify the text by making sentences simpler or replacing difficult words with easier ones. This
process, however, takes time and could be a burden for teachers. The present study aims to build an automatic
lexical simplification system that can assist teachers in preparing materials for classes and examinations. The
proposed system first selects target words based on CEFR levels and then lists candidates from a thesaurus. Then,
the paraphrasablity of each candidate is examined using a word embedding method. The results show that the
proposed method can provide correct candidates for more cases than the baseline and existing methods and is
robust even when the target is a polysemous word.
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Think back to pioneer days, when individuals knew

how to do so much more than we do today, from

building their homes, to growing their crops, to

hunting for food, to repairing their equipment.
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