

Experimental evaluation of Time-Series Gradient Boosting Tree with Time-Series Benchmark datasets

今村 光良 *1*2 Mitsuyoshi Imamura

中川 慧 *1*3 吉田 健一 *3 Kei Nakagawa Kenichi Yoshida

*¹野村アセットマネジメント株式会社 Nomura Asset Management Co., Ltd

*²筑波大学大学院 システム情報工学研究科 University of Tsukuba Graduate School of Systems and Information Engineering

> *³筑波大学大学院 ビジネス科学研究科 University of Tsukuba Graduate School of Business Sciences

In this paper, We evaluated the time-series gradient boosting decision tree method using benchmark data. Our time-series gradient boosting tree has weak learners with time-series and cross-sectional attribute in its internal node, and split examples based on dissimilarity between a pair of time-series or impurity between a pair of cross-sectional attributes. It has been empirically observed that the method induces accurate and comprehensive decision trees in time-series classification, which has gaining increasing attention due to its importance in various real-world applications.

1. はじめに

本論文では、別報 [中川 18] で提案された時系列勾配ブース ティング木について、様々な時系列データセットに対して分析 を行い、その有効性を評価する。別報 [中川 18] では時系列お よびクロスセクションの属性を持つデータセットに対する時系 列勾配ブースティング決定木を提案した。勾配ブースティング 木などのツリーモデルは一般に可読性に優れており、説明責任 という観点から実務への適用がしやすい。勾配ブースティン グ木は決定木を多段に組み合わせることで確率的な予測値を 導出する手法であり、非常に高い精度を実現できる。しかしな がら従来の決定木学習手法は時系列属性を想定していないた め、時系列データを含むデータ集合に適用する場合、データ の前処理が必要となる。最も単純な前処理の方法として、時 系列データを計測値の平均値や標準偏差などの時系列データ のモーメントで置き換える方法が考えられる。ただし、この 方法は時系列データの構造、すなわち形状を無視しており、例 えば形が大きく異なる時系列データを同一視してしまう欠点 がある。そこで、勾配ブースティング・アルゴリズムに用いる 弱学習器として、以上の問題点を克服した時系列データの形 を陽に扱い時系列データ全体を対象とする [Yamada 03] の基 準例分割テストによる分割を用いた時系列決定木を使用する。 時系列決定木は相違度基準として動的時間伸縮法 (DTW) を 用いているが、時系列ペアに対し距離が定義されていることか ら、[Nakagawa 17] のように決定木学習手法ではなく、最近傍 法 (k-NN や k*-NN[Anava 16]) を用いることも考えられる。 ただし、最近傍法は怠惰学習 (lazy learning) であるために分 類モデルが存在せず、学習結果が分かりにくいという欠点があ る。本論文では、85種類の異なる時系列データセットである UCR データセット [Chen 15] を用いて、DTW を距離尺度と した 1-Nearest Neibor(NN) と先行研究である [Yamada 03] の時系列決定木をベンチマークに、時系列勾配ブースティング

木の性能を評価する。

2. 先行研究

勾配ブースティングは、ブースティング・アルゴリズムの一種 である。ブースティングとは、集団学習の枠組みの一つで、複 数の弱学習器を統合して全体の学習器を構成する手法である。 弱学習器としては、決定木が使われることが多い。ブースティ ングにおける弱学習器として決定木を用いることは、データの 外れ値に強い、数値変数と離散変数や欠損値などを扱いやすい などの利点がある。本研究では弱学習器として、[Yamada 03] の時系列決定木に、時系列以外の通常の特徴量も追加した決定 木を使用することを提案する。そこで、以下では時系列決定木 および勾配ブースティング木についてレビューする。

2.1 時系列決定木

時系列決定木は、内部ノードに基準となる属性時系列を持つ 決定木であり、基準例分割テストまたはクラスター分割テスト によってサンプルを分割していく [Yamada 03]。[山田 03]の 実験からクラスター分割テストより基準例分割テストの結果が 良好であることから、本稿では基準例分割テストを分割手法と して用いる。

データセット D は、n 個のサンプル { x_i , i = 1, ..., n} を含み、 各サンプル x_i はそれぞれ m 個の属性 { a_j , j = 1, ..., n} とク ラスラベルまたは目的変数 { y_i , i = 1, ..., n} を持つ。各属性 a_j は、時間順に値を並べた時系列データ又は系列を持たない通常 の連続値、名目属性を持つ。ここで $x(a_j)$ は一つのサンプルであ り、基準例と呼ぶ。基準例分割テストは、サンプル x_i の属性 a_j に関する時系列データを $x_i(a_j)$ で表すと、データセット全体を、 DTW($x(a_j)$, $ex_i(a)$) < θ_i を満たすデータセットから構成され る集合 $L(x, a_j, \theta_i) = \{(y, x) | DTW(x(a_j), x_i(a_j)) < \theta_i\}$ とそ れ以外の集合 $R(x, a_j, \theta_i) = \{(y, x) | DTW(x(a_j), x_i(a_j)) \ge \theta_i\}$ に分割する。ここで DTW(x, y) は、動的時間伸縮法 (DTW) に基づいた類似度を表す。DTW は時系列データにおける複数点

連絡先: 今村 光良, 野村アセットマネジメント株式会社, 〒 103-8260 東京都中央区日本橋一丁目 12 番 1 号

のデータに対応づけられるため、時間方向の非線形な伸縮を許 容する。このため、長さが異なる時系列データのペアに適応で きる上に、結果が人間の直観により合致する。具体的なアルゴ リズムは、Algorithm1の通り。

基準例分割テストはサンプルが基準例 $x(a_j)$ と DTW で計 測して、類似しているか、あるいは類似していないかという基 準で閾値 θ を変えながら分割する。当該分割の評価基準とし ては、利得比基準など通常の決定木で用いられている方法が使 える。

Alg	gorithm 1 DTW distance	
1:	procedure $DTW(x, y)$	
		\triangleright Initialize matrix D
2:	$\mathbf{Var}\ D[N,M]$	
3:	D[1,1] = 0	
4:	for $i = 2$ to N do	
5:	for $j = 2$ to M do	
6:	$D[i, j] = \infty$	
7:	end for	
8:	end for	
		\triangleright Calculate DTW distance
9:	for $i = 2$ to N do	
10:	for $j = 2$ to M do	
11:	D[i,j] = d(x[i -	$-1], y_{[j-1]})$
	-	+min(D[i, j - 1], D[i -
	1, j], D[i - 1, j - 1])	
12:	end for	
13:	end for	
14:	return $D[N, M]$	
15:	end procedure	

2.2 勾配ブースティング木

[Friedman 01] は、ブースティングの各ステップで構築する モデルに回帰ツリーを用いる勾配ブースティング木(gradient boosting tree)という手法を考案した。これは特徴量(入力) をx、ラベルをyとして、弱学習器 $f_m(x), m = 0, ..., M$ に対 して全体の学習器F(x)

$$F(x) = f_0(x) + f_1(x) + \dots + f_M(x) \tag{1}$$

を損失関数 L(y, F(x)) が最小になるように弱学習器 $f_m(x)$ を 逐次的に学習し統合する。つまり、最初に学習器 $F_0(x) = f_0(x)$ が与えられるとし、m ステップ目の学習ではm 個の学習器か らなる全体の学習器を損失関数 L(y, F(x)) が最小になるよう に弱学習器を決める。

$$F_m(x) = F_{m-1}(x) + f_m(x)$$
(2)

具体的なアルゴリズムは以下の通りである。勾配ブースティ ング木の特徴は、その時点でのモデルの予測値と結果の残差を 目的変数とした回帰ツリーを構築し、そのツリーモデルの予測 値による値を加算することにある。

提案手法 - 時系列勾配ブースティング木

前章で確認した [Yamada 03] の基準例分割テストによる時 系列決定木において、時系列属性以外の属性、通常の連続値、 名目属性も追加する。属性が時系列データの場合には基準例 分割テストによって分割を行い、時系列以外の場合には、通

Algor	Algorithm 2 Gradient Boosting Tree			
1: pr	cocedure Gradient Boosting $Tree(y, x)$			
	\triangleright Initialize F_0 with a constant			
2:	$F_0(x) = \sum_{i=1}^{N} \arg\min_{c}(y_i, c)$			
3:	for $m = 1$ to M do			
4:	$r_{im} = -\left[\frac{L(y_i, F(x_i))}{F(x_i)}\right]F(x) = F_{m-1}(x_{i-1})$			
	\triangleright Fit a decision tree to predict targets r_{im}			
5:	$f(x) = FitTree(r_{im}, x)$			
6:	$ \rho_m = \arg\min_{i=1}^{N} \sum_{i=1}^{N} L(y_i, F_{m-1}(x) + \rho f(x)) $			
7:	$F_m(x) = \overset{\rho}{F_{m-1}(x)} + \gamma \rho_m f(x)$			
8:	end for			
9:	return $F(x) = \sum_{m=1}^{M} F_m(x)$			
10: en	10: end procedure			

常の決定木と同様の基準で分割を行う。具体的なアルゴリズム (StandardExSplit with Cross-Sectional Data) は、Algorithm3の通り。 $H(\bullet)$ は不純度を表す関数で、本稿では、よく使用される Gini 係数を用いる。

Al	gorithm 3	3 Standa	rdExSplit	with	Cross-Sectional	Data
1:	procedu	re Split	$(\{y_1,, y_r\})$	$_{n}\},\{x_{1}$	$(,,x_n\})$	

2:	for each samples x_i do
3:	for each attribute a_j do
4:	if attribute a_j is time-series then
5:	for each samples x_k do
6:	$L(x,a_j, heta_i)$
7:	$= \{(y,x) DTW(x_i(a_j), x_k(a_j)) < \theta_k\}$
8:	$R(x, a_j, heta_i)$
9:	$= \{(y, x) DTW(x_i(a_j), x_k(a_j)) \ge \theta_k\}$
10:	$G(L,R, heta_i)$
11:	$= \frac{ L }{ L+R }H(L) + \frac{ R }{ L+R }H(R)$
12:	end for
13:	else
14:	$L(x, a_j, \theta_i) = \{(y, x) x(a_j) < \theta_i\}$
15:	$R(x, a_j, \theta_i) = \{(y, x) x(a_j) \ge \theta_i\}$
16:	end if
17:	$G(L, R, \theta_i) = \frac{ L }{ L+R } H(L) + \frac{ R }{ L+R } H(R)$
18:	end for
19:	end for
20:	$\theta^* = \arg \min G(L, R, \theta_i)$
21:	return best split θ^*
22:	end procedure

この分割アルゴリズムを用いた時系列決定木を勾配ブース ティング木の弱学習器として利用する。ただし、本論文の分析 においては、データセットにクロスセクションのデータが存在 しないため、クロスセクションのデータは用いない。

4. 実験

提案手法の有効性を確認するために、実データを用いた分析 を行う。85 種類の異なる時系列データセットである UCR デー タセット [Chen 15] を用いて、時系列勾配ブースティング木の性 能を評価する。UCR データセットは平均0、分散1に正規化さ れているため、特別な前処理は行っていない。各データセットは それぞれ、Image Outline(IO)、Motion Classification(MC)、 Sensor Readings(SR)、Synthetic(Syn) という 4 つのカテゴ リーに分類できる。表 1 にベースラインである DTW 距離を 用いた 1-NN(1-NN DTW) と先行研究で提案された時系列決 定木 (TST)、そして提案手法である時系列勾配ブースティング 木 (TSGBT) の各データセット毎の Error Rate をまとめた。 31 のデータセットについてベンチマークである 1-NN DTW に対して改善がみられた。

勾配ブースティング木は、怠惰学習 (Lazy Learning) であ る k-NN とは異なり、学習が必要であるため、学習にはある 程度のサンプル数が必要であると考えられる。そこで、別報 [中川 18] の金融時系列データの分析と同程度である 400 以上 のサンプルが確保できるデータセット 21 個についての各カテ ゴリーの平均 Error Rate を示したのが表 1 である。14 のデー タセットについて改善がみられた。

5. まとめ

本論文では、別報[中川 18] で提案された時系列勾配ブース ティング木について、85 種類の異なる時系列データセットで ある UCR データセット [Chen 15] を用いて、時系列勾配ブー スティング木の性能を評価した。ベースラインである DTW 距離を用いた 1-NN(1-NN DTW) と先行研究で提案された時 系列決定木 (TST)、そして提案手法である時系列勾配ブース ティング木 (TSGBT)の各データセット毎の Error Rate を評 価した結果、31 のデータセットについてベンチマークである 1-NN DTW に対して改善がみられた。

また、勾配ブースティング木は、怠惰学習 (Lazy Learning) である *k*-NN とは異なり、学習が必要であるため、学習にはあ る程度のサンプル数が必要であると考えられる。そこで、400 以上のサンプルが確保できるデータセット 21 個についての各 カテゴリーの平均 Error Rate を評価したところ、14 のデータ セットについて改善がみられた。

参考文献

- [Anava 16] Anava, O. and Levy, K.: k*-nearest neighbors: From global to local, in Advances in Neural Information Processing Systems, pp. 4916–4924 (2016)
- [Chen 15] Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., and Batista, G.: The UCR Time Series Classification Archive (2015), www.cs.ucr.edu/ ~eamonn/time_series_data/
- [Friedman 01] Friedman, J. H.: Greedy function approximation: a gradient boosting machine, Annals of statistics, pp. 1189–1232 (2001)
- [Nakagawa 17] Nakagawa, K., Imamura, M., and Yoshida, K.: Stock Price Prediction using k*-Nearest Neighbors and Indexing Dynamic Time Warping, in Artificial Intelligence of and for Business (AI-Biz 2017) (2017)
- [Yamada 03] Yamada, Y., Suzuki, E., Yokoi, H., and Takabayashi, K.: Decision-tree induction from time-series data based on a standard-example split test, in *Proceed*ings of the 20th International Conference on Machine Learning (ICML-03), pp. 840–847 (2003)

FOIL	IO	0.01	1.01	0.40
50 Words	10	0.31	0.68	0.40
Adiac	10	0.40	0.80	0.51
ArrowHead	IO	0.30	0.34	0.39
Beef	SR	0.37	0.63	0.57
BeetleFly	10	0.30	0.30	0.30
PindChieleon	10	0.25	0.95	0.00
Birdemicken		0.25	0.25	0.30
Car	SR	0.27	0.43	0.40
CBF	Syn	0.00	0.11	0.01
ChlorineConcentration	SR	0.35	0.45	0.41
CinCECGtorso	SR	0.35	0.54	0.44
Coffee	SB	0.00	0.11	0.11
Compartant	SIL	0.00	0.11	0.11
Computers	Sh	0.50	0.38	0.32
CricketX	MC	0.25	0.62	0.36
CricketY	MC	0.26	0.61	0.39
CricketZ	MC	0.25	0.66	0.36
DiatomSizeBeduction	IO	0.03	0.17	0.14
Dist-IDb-l-s-OutlingACo	10	0.00	0.94	0.91
Distair naianxOutimeAgeGroup	10	0.21	0.24	0.21
DistalPhalanxOutlineCorrect	10	0.23	0.25	0.23
DistalPhalanxTW	IO	0.29	0.36	0.23
Earthquakes	SR	0.26	0.29	0.23
ECG	SR	0.23	0.21	0.21
ECC5000	SD	0.08	0.09	0.07
ECG5000		0.08	0.08	0.07
ECGFIVeDays	SR	0.23	0.32	0.32
ElectricDevices	SR	0.40	0.36	0.25
Face (all)	IO	0.19	0.66	0.28
Face (four)	IO	0.17	0.11	0.35
FacesUCR	IO	0.10	0.54	0.18
Fish	10	0.18	0.49	0.98
1 1511 TO 1.4		0.18	0.43	0.20
FordA	SR	0.44	0.36	0.26
FordB	SR	0.41	0.36	0.24
Gun-Point	MC	0.09	0.27	0.21
Ham	SR	0.53	0.49	0.33
HandOutlines	IO	0.20	0.10	0.17
HandOutlines	10	0.20	0.19	0.17
Haptics	MC	0.62	0.63	0.60
Herring	IO	0.47	0.41	0.39
InlineSkate	MC	0.62	0.74	0.70
InsectWingbeatSound	SB	0.65	0.69	0.58
ItalyPowerDomand	SP	0.05	0.00	0.00
Italy fower Demand	SIL	0.05	0.09	0.09
LargeKitchenAppliances	SR	0.21	0.27	0.19
Lightning-2	SR	0.13	0.26	0.25
Lightning-7	SR	0.27	0.51	0.42
MALLAT	Svn	0.07	0.36	0.16
Moat	SB	0.07	0.10	0.12
Meat	IO	0.07	0.10	0.12
MedicalImages	10	0.26	0.45	0.28
MiddlePhalanxOutlineAgeGroup	IO	0.25	0.26	0.25
MiddlePhalanxOutlineCorrect	IO	0.35	0.37	0.31
MiddlePhalanxTW	10	0.42	0.40	0.40
MotoStrain	CD	0.17	0.19	0.10
N L : D ECCTI 1	CD	0.17	0.10	0.19
Non-Invasive Fetal ECG 1 norax1	SR	0.21	0.71	0.24
Non-Invasive Fetal ECG Thorax2	SR	0.14	0.88	0.18
OliveOil	SR	0.17	0.17	0.20
OSU Leaf	IO	0.41	0.52	0.43
PhalangesOutlinesCorrect	10	0.27	0.31	0.20
Phonema (readma)	CD	0.77	0.90	0.77
r noneme (readme)	IO	0.77	0.80	0.77
Plane	10	0.00	0.21	0.00
ProximalPhalanxOutlineAgeGroup	10	0.20	0.16	0.18
ProximalPhalanxOutlineCorrect	IO	0.22	0.20	0.17
ProximalPhalanxTW	IO	0.26	0.28	0.23
RefrigerationDevices	SB	0.54	0.53	0.50
ScreenType	SP	0.60	0.57	0.62
or ho.	on on	0.00	0.57	0.02
ShapeletSim	Syn	0.35	0.45	0.46
ShapesAll	IO	0.23	0.90	0.29
SmallKitchenAppliances	SR	0.36	0.27	0.22
SonyAIBORobot Surface	SR	0.28	0.29	0.13
SonyAIBOBobot SurfaceII	SB	0.17	0.21	0.21
StarLightCurren	CD	0.00	0.07	0.05
StarLightCurves	SR	0.09	0.07	0.05
Strawberry	SR	0.06	0.13	0.09
Swedish Leaf	IO	0.21	0.48	0.18
Symbols	IO	0.05	0.24	0.10
Synthetic Control	Syn	0.01	0.05	0.03
ToeSegmentation1	MC	0.23	0.28	0.26
TooSogmont-ti9	MC	0.20	0.20	0.20
10eSegmentation2	MC	0.16	0.27	0.27
Trace	SR	0.00	0.09	0.06
Two Patterns	Syn	0.00	0.03	0.00
TwoLeadECG	SR	0.10	0.20	0.20
uWaveGestureLibrarvX	MC	0.27	0.31	0.23
uWayoCostureLibrary	MC	0.27	0.90	0.20
W G t L1 Z	MC	0.37	0.39	0.01
uwaveGestureLibraryZ	MC	0.34	0.35	0.29
UWaveGestureLibraryAll	MC	0.11	0.39	0.10
Wafer	SR	0.02	0.03	0.02
Wine	SR	0.43	0.48	0.35
WordSynonyms	IO	0.35	0.63	0.47
1101 (10) y 1101 y 1115	10	0.55	0.00	0.51
worms	10	0.54	0.48	0.51
WormsTwoClass	IO	0.34	0.34	0.34
Voga	10	0.16	0.24	0.19

表 1: Error Rate of UCR Time-series Datasets

Category	1-NN DTW	TST	TSGBT
Image Outline	0.23	0.49	0.24
Motion Classification	0.27	0.36	0.20
Sensor Readings	0.24	0.37	0.19
Synthetic	0.00	0.03	0.00

表 2: Average Error Rate of UCR Time-series Datasets by Category

- [山田 03] 山田悠,鈴木英之進,横井英人,高林克日己 他:動 的時間伸縮法に基づく時系列データからの決定木学習,情報 処理学会研究報告知能と複雑系 (ICS), Vol. 2003, No. 30 (2002-ICS-132), pp. 141–146 (2003)
- [中川 18] 中川慧,今村光良,吉田健一:時系列勾配ブースティング木による分類学習金融時系列予測への応用,人工知能学会全国大会論文集 2018 年度人工知能学会全国大会(第 32回)論文集社団法人人工知能学会(2018)