
Batch Random Walk for GPU-Based Classical Planning

(Extended Abstract)

Ryo Kuroiwa Alex Fukunaga

Graduate School of Arts and Sciences, The University of Tokyo

Graphical processing units (GPUs) have become ubiquitous because they offer the ability to perform cost and
energy efficient massively parallel computation. We investigate forward search classical planning on GPUs based
on Monte-Carlo Random Walk(MRW). We first propose Batch MRW (BMRW), a generalization of MRW which
performs random walks starting with many seed states, in contrast to traditional MRW which used a single seed
state. We evaluate a sequential implementation of BMRW on a single CPU core and show that a sequential,
satisficing planner based BMRW performs comparably with Arvand, the previous MRW-based planner. Then, we
propose BMRWG, which uses a GPU to perform random walks. We show that BMRWG achieves significant speedup
compared to BMRW and achieves competitive performance on a number of IPC benchmark domains. This is an
extended abstract of an ICAPS2018 paper [Kuroiwa 18].

1. Introduction
The use of Graphics Processing Units (GPUs) for general-

purpose computing has become ubiquitous in many areas includ-

ing AI, but their use in domain-independent planning has been

quite limited. This seems largely due to the fact that there is a

significant mismatch between the architecture of GPUs and for-

ward heuristic search based algorithms commonly used for plan-

ning. For satisficing, classical planning, the most widely studied

forward search strategy in recent years have been approaches such

as Greedy Best First Search (GBFS), as well as many improve-

ments which seek to avoid/escape local minima and plateaus.

In standard GBFS, Enhanced Hill-Climbing, and weighted

A* approaches, each node expansion involves accessing global

open/closed sets, which poses a challenge for efficient paralleliza-

tion. Methods for efficiently distributing work in parallel best-first

search (BFS) based planners on multi-core machines as well as

clusters have been studied [Burns 10, Kishimoto 13], but these

previous approaches for parallel BFS can not be straightforwardly

applied to GPUs. One major issue is that GPUs provide thousands

of cores/threads, but the amount of GPU RAM available per thread

is quite limited. For example, a state-of-the-art Nvidia GTX1080

has 8GB global RAM, which must be shared by 2560 physical

CUDA cores. This will be exhausted within a few seconds by a

parallel BFS algorithm if the open/closed lists are stored on the

GPU, as in GA*, a delayed duplicate detection based A* for the

GPU [Zhou 15]. There is also a tiny amount of fast RAM per core

(∼375 bytes/core on a GTX1080), and although previous work has

investigated performing domain-specific IDA* search using only

this local memory [Horie 17], this is too small to hold even a single

state for most domain-independent planning domains. Sulewski et

al. ([Sulewski 11]) used a GPU to parallelize the successor gen-

eration step for breadth-first search in cost-optimal planning, with

duplicate detection and open/closed list management performed on

the CPU. A forward heuristic search method for satisficing plan-

ning which effectively uses the GPU has remained an open prob-

lem.

One approach to heuristic-driven forward search which encour-

ages explorative search behavior and is suited for GPU paralleliza-

tion is Monte Carlo Random Walk Planning (MRW) [Nakhost 09].

At each step, MRW starts at some state s (initially the initial state),

performs a set of random walks from s, and then sets s to the best

endpoint (according to a heuristic function) found by the random

walks. State-of-the-art MRW-based planners have been shown to

be competitive with GBFS-based approaches on some domains

[Nakhost 13]. MRW appears to be suited for GPU parallelization

because each random walk can be executed independently by a

GPU thread.

In this paper, we first propose BMRW, a simple generalization

of MRW-based search which combines an open list based search

strategy with MRW. In BMRW, the search is driven by an open

list, as in GBFS. In each iteration, a batch of nodes is selected

from the open list, and random walks are performed starting with

these nodes. Promising states found by the random walks are then

inserted into the open list, and this cycle repeats until a goal is

found or time runs out. We experimentally show that BMRW is a

promising search strategy, and show that a planner using BMRW

search on a single CPU core is competitive with Arvand13, the

previous, state-of-the-art MRW based sequential planner.

Next, we propose BMRWG, an efficient, parallel implementa-

tion of BMRW for GPUs. BMRWG maintains the open list in CPU

memory, but uses the GPU for the random walks. We show that

BMRWG achieves significant speedup compared to BMRW, and

that BMRWG achieves competitive performance on a number of

standard IPC benchmark domains.

2. Monte-Carlo Random Walk Planning
Monte-Carlo Random Walk Planning (MRW) was first pro-

posed in the Arvand planner [Nakhost 09]. The state-of-the-art Ar-

vand13 MRW-based planner, which performs significantly better

than the original Arvand planner, works as follows: Given a state s,

a basic random walk repeatedly generates successors of s, chooses

one of the successors s′ of s and transitions to s′ (s → s′). From

the current node s (initially set to the start state), the Arvand13

MRW algorithm perform a set of random walks. Each state on the

walk is evaluated according to a heuristic evaluation function h

(the FF heuristic [Hoffmann 01] was used), and the walk returns

1

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

3Pin1-13



either when (a) it encounters a state with a better h-value than

the random walk start state, in which case that state becomes the

start point for the next random walk, or (b) with some probabil-

ity (i.e., local restart). A global restart is triggered when h does

not improve after some number of random walks. Arvand13 used

an enhanced random walk which, instead of uniformly randomly

choosing a successor, biased successor choice according to helpful
actions identified by the FF heuristic. In addition, local and global

start thresholds are set adaptively.

3. Batch Monte-Carlo Walk (BMRW)
We now propose BMRW, a generalization of MRW. BMRW,

shown in Alg. 1, maintains a priority queue openList, initially

containing the successors of the initial state s0. In each iteration

of the main loop (lines 21–36), BMRW first checks if openList is

empty, and if so, initializes it with the successors of the start state

s0, i.e., it performs a global restart. Then, a batch of batchSize

nodes is selected from openList. A random walk (Alg. 1, Walk

function) of up to l steps is peformed from each start point in

batch, and the results are stored in walkres.

The main differences between BMRW and MRW are: (1) MRW

performs random walks from the same start state, while BMRW

performs a set of random walks based on a batch of start states se-

lected from openList. (2) MRW only keeps and updates a single

“current state” (which is used as the start point for random walks),

while BMRW maintains an openList, similar to GBFS-based ap-

proaches. Thus, BMRW can be viewed as a hybrid between MRW

and GBFS. (3) In MRW, every random walk is followed by a pos-

sible update of the current state (jump to the state returned by the

walk), whereas BMRW performs an entire batch of walks at a time.

In addition to the above basic scheme, BMRW uses an elite in-
sertion policy (lines 32-36), where for the best n results (accord-

ing to h-value) of the random walk return, the successors of those

nodes are inserted into openList instead of the nodes themselves.

This is intended to strongly encourage further exploration of these

“elite” nodes by pushing its many successors into openList (be-

cause these successors also have good h-values, they are likely to

be expanded soon).

Furthermore, a closedList is used in order to prevent dupli-

cate states from being pushed into the open list (lines 30-31). This

ensures that each random walk starts from a different start state,

promoting exploration of the search space.

MRW can be viewed as a special case of BMRW with batch size

b = 1 and a special openList limited to size 1.

3.1 BMRWG: BMRW on a GPU
In principle, BMRW can be efficiently implemented on a GPU,

due to the independence of each random walk. In Alg. 1 lines 25-

26, the for loop is executed in parallel on the GPU. After each

node in the batch selected in line 24 is copied to the GPU, each

node in the batch is assigned to a GPU thread, and each random

walk is performed by a single GPU thread, after which the result of

the walk is copied back to the CPU. Everything else is performed

on the CPU.

The main bottleneck in implementing BMRW on a GPU is

the relatively small amount of GPU RAM available per thread.

Although GPUs have a substantial amount of global memory

available on the GPU, (the GTX1080 we used has 8GB), this

Algorithm 1 Batch MRW

1: function WALK(s, goals, l)
2: sbest ← s
3: for i ← 1 to l do
4: if s ∈ goals then return s
5: if DeadEnd(s) then s ← sbest
6: else s ← RANDOMSELECT(successors(s))
7: if h(s) < h(sbest) then sbest = s

8: return sbest
9:

10: function FILLBATCH(openList, batchSize, batch)
11: offset ← 0
12: for i ← 1 to batchSize do
13: if openList is Empty then
14: if offset = 0 then State offset = i
15: batch[i] ← batch[i − offset]
16: else
17: batch[i] ← POP(openList)

18:
19: function BATCHMRW(s0, goals, l, batchSize, n)
20: openList, closedList, batch, walkres ← φ
21: loop
22: if openList is Empty then
23: openList ← successors(s0)

24: FILLBATCH(openList, batchSize, batch)
25: for i ← 1 to batchSize do
26: walkres[i] ← WALK(batch[i], goals, l)

27: i ← 1
28: for all s ∈ walkres do
29: if s ∈ goals then return s
30: if s ∈ closedList then continue
31: INSERT(closedList, s)
32: if i ≤ n then
33: PUSH(openList, successors(s), h(s))
34: i ← i + 1
35: else
36: PUSH(openList, s, h(s))

global RAM must be shared among all threads. The GTX1080 has

2560 CUDA cores (20 Streaming Multiprocessors, 128 cores/SM),

roughly 3125KB/thread. Although a random walk does not require

much memory for state information, as there is no open/closed list

during the walk, it is necessary to maintain data structures for fast,

incremental computation of heuristic values during the walk. For

example, to compute the FF heuristic using the generalized Dijk-

stra method [Liu 02, Keyder 08], the cost and unsatisfied precon-

ditions of each ground action is required. On the GTX1080, if we

use 2560 threads, each thread can handle approximately 390,000

ground actions – this is sufficient for most IPC benchmark do-

mains. However, this implies that we currently can not run BMRW

with tens of thousands of threads to take even better advantage of

the ability of GPUs to overlap communication and memory access.

Note that larger domains can be handled by reducing the number

of threads, at the cost of leaving some cores idle.

We used the Landmark Count (LMC) heuristic [Hoffmann 04]

for BMRWG. The landmark graph is built on the CPU once at

the beginning of search, transferred to the GPU global RAM, and

shared by all GPU threads. Computing the LMC value only re-

quires incrementally updating the number of unreached landmarks

for the state. This requires O(#facts) memory. As shown below,

BMRW with the LMC heuristic significantly outperforms BMRW

with the FF heuristic.

4. Experimental Results
In our experimental evaluation (please see the full paper

[Kuroiwa 18]), we evaluated a sequential implementation of

BMRW on a single CPU core and showed that a sequential, sat-

isficing planner based BMRW performs comparably with Arvand,

the previous MRW-based planner. Then, we showed that BMRWG

achieves significant speedup compared to BMRW and achieves

2

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

3Pin1-13



competitive performance on a number of IPC benchmark domains.

5. Conclusion
In order to exploit GPUs in domain-independent planning, we

first proposed BMRW, a generalization of MRW which combines

GBFS and random walk by performing a GBFS-like, openList-

driven search, which at each iteration performs batches of ran-

dom walks in order to explore the search space. We showed that
BMRW is competitive with previous random walk strategies, in-
cluding Arvand13. We then showed that BMRWG, a heteroge-
neous CPU/GPU implementation of BMRW, achieves significant
speedup compared to BMRW and a straightforward paralleliza-
toin of MRW13.

We have shown that random walk using the relatively

lightweight Landmark Count heuristic can be efficiently imple-

mented entirely on the GPU. In fact, MRW13, the baseline par-

allelization of Arvand13, runs almost entirely on the GPU, except

for the top level loop, and in BMRWG, only the global openList

and closedList management are performed by the CPU. Our pri-

mary objective was to demonstrate the feasibility of GPU-based

forward heuristic search, so we focused on efficient implementa-

tion on the GPU side, and the current implementation only uses a

single CPU core. Effective, simultaneous usage of multiple CPU

cores along with the GPU in a more heterogeneous algorithm is an

avenue for future work. For example, openList and closedList

management can be parallelized, as in [Sulewski 11].

While we focused on a relatively simple search strategy which

is basically GBFS with (batched) random walk lookahead, ran-

dom walk has been embedded as an exploration mechanism in

other forward heuristic search variants such as RW-LS (ArvandLS)

[Xie 12] and GBFS-LE [Xie 14]. It should be possible to combine

these more complex algorithms with the basic idea of applying

batches of random walks on the GPU with a diverse set of start

points and a lightweight heuristic.

References
[Burns 10] Burns, E., Lemons, S., Ruml, W., and Zhou, R.: Best-

first heuristic search for multicore machines, Journal of Artifi-
cial Intelligence Research, Vol. 39, pp. 689–743 (2010)

[Hoffmann 01] Hoffmann, J. and Nebel, B.: The FF Planning Sys-

tem: Fast Plan Generation through Heuristic Search, J. Artif.
Intell. Res.(JAIR), Vol. 14, pp. 253–302 (2001)

[Hoffmann 04] Hoffmann, J., Porteous, J., and Sebastia, L.: Or-

dered Landmarks in Planning, J. Artif. Intell. Res., Vol. 22, pp.

215–278 (2004)

[Horie 17] Horie, S. and Fukunaga, A.: Block-Parallel IDA* for

GPUs, in Proceedings of the Tenth International Symposium on
Combinatorial Search, pp. 134–138 (2017)

[Keyder 08] Keyder, E. and Geffner, H.: Heuristics for Planning

with Action Costs Revisited, in ECAI 2008 - 18th European
Conference on Artificial Intelligence, Patras, Greece, July 21-
25, 2008, Proceedings, pp. 588–592 (2008)

[Kishimoto 13] Kishimoto, A., Fukunaga, A., and Botea, A.:

Evaluation of a simple, scalable, parallel best-first search strat-

egy, Artificial Intelligence, Vol. 195, pp. 222–248 (2013)

[Kuroiwa 18] Kuroiwa, R. and Fukunaga, A.: Batch Random

Walk for GPU-Based Classical Planning, in Proceedings of In-
ternational Conference on Automated Planning and Scheduling
(ICAPS) (2018)

[Liu 02] Liu, Y., Koenig, S., and Furcy, D.: Speeding Up the Cal-

culation of Heuristics for Heuristic Search-based Planning, in

Eighteenth National Conference on Artificial Intelligence, pp.

484–491, Menlo Park, CA, USA (2002), American Association

for Artificial Intelligence

[Nakhost 09] Nakhost, H. and Müller, M.: Monte-Carlo Explo-

ration for Deterministic Planning, in Proceedings of the 21st In-
ternational Jont Conference on Artifical Intelligence, IJCAI’09,

pp. 1766–1771, San Francisco, CA, USA (2009), Morgan

Kaufmann Publishers Inc.

[Nakhost 13] Nakhost, H. and Müller, M.: Towards a Second

Generation Random Walk Planner: An Experimental Explo-

ration, in Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI ’13, pp. 2336–

2342, AAAI Press (2013)

[Sulewski 11] Sulewski, D., Edelkamp, S., and Kissmann, P.: Ex-

ploiting the Computational Power of the Graphics Card: Opti-

mal State Space Planning on the GPU., in Proceedings of the
International Conference of Automated Planning and Schedul-
ing(ICAPS) (2011)

[Xie 12] Xie, F., Nakhost, H., and Müller, M.: Planning via

random walk-driven local search, in Proceedings of the In-
ternational Conference of Automated Planning and Schedul-
ing(ICAPS) (2012)

[Xie 14] Xie, F., Müller, M., and Holte, R.: Adding Local Ex-

ploration to Greedy Best-First Search in Satisficing Planning,

in Proceedings of the Twenty-Eighth AAAI Conference on Ar-
tificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada., pp. 2388–2394 (2014)

[Zhou 15] Zhou, Y. and Zeng, J.: Massively Parallel A* Search on

a GPU, in Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., pp. 1248–1255 (2015)

3

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

3Pin1-13


