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Growing number of robots and increase in its capabilities impose new demands on meta robotic systems, capable
of performing hardware abstraction and sharing skills between different robots. In this work such systems are
studied, in order to make evident what can actually be done now and what are the problems that must be dealt
with in the future.

1. Introduction

Holding the advent of deep learning and the third arti-

ficial intelligence boom as background [Matsuo 15], one of

the keys of current robotics research is to be Adaptable and

Universal. This gives place to the rise of robots as a new

and tangible market, with total sales of household and per-

sonal service robots forecast to grow 23.5% per year from

2015 to 2020 [Grace Market Data 15]. Such demands feed

robotics research back, in a cycle that leads to growth in

both overall number and capabilities of robots.

Under such situation, the administration of specific pro-

grams build for specific platforms becomes more and more

complex, urging for the unification of software into meta

robotic systems capable of abstracting hardware and shar-

ing skills between different robots. Although the creation

of a system that can both solve different problems and be

compatible with several robots is a common goal for robot

software architects, as described in [Ferland 15], robotics

research nowadays proves to be highly dependent on hard-

ware platform and software implementation, focusing on

environment adaptability rather than universality of execu-

tion.

In this work the sharing of skills between robots is ex-

plored, in order to delimit what can currently be done to-

wards its solving and make clear what kind of problems still

need to be overcome.

2. Definition and Classification of Skills

In order to reason about the sharing of robotic skills,

it is necessary to first properly define them in clear and

concrete terms. In this work we use the definitions proposed

by Affonso et al. [Affonso 18b], modified from Jacobsson et

al. [Jacobsson 16] and described as follows.

• Skill: The potential for a robot to reproduce a certain

task.

• Task: A set of actions with meaningful outcome.

• Action: A set of motions which cause an effect on the

outside environment.
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• Motion: Movements that alter the robot’s physical

state.

Furthermore, classification of skills into joint, action

point and objective level, also given at Affonso et

al.’s [Affonso 18b] work, are used. These are described as

follows.

1. Joint level

At joint level, each motion is described by a vector

gathering angle values for all of robot’s degrees of free-

dom. Skills are the enumeration of such motions.

2. Action point level

At action point level, skills are described by the tra-

jectory of the end effector, with emphasis on its points

of application. Possible relations with target objects

and effects on the outside environments are also con-

sidered, being equivalent to the overall procedure for

achieving the task in question.

3. Objective level

At objective level, skills are solely described by the

final state to be achieved, without further instruction

on motions and subprocedures to be taken.

The above definitions are treated as equivalent state-

ments for appearance level, action level and purposive task

level imitation of human behavior, defined by Kuniyoshi et

al. [Kuniyoshi 07], for being the sharing of skills between

two robots comparable to the imitation between them.

3. Sharing Robotic Skills

3.1 Requirements on Skill Sharing

To share a skill between two robots means, in simple

statements, that both of these robots will be able to achieve

a task that previously only one of them could accomplish.

In further analysis, for being tasks characterized by its

meaningful outcome, or, in other words, objective, we can

understand skill sharing as both the sharing of objectives

and the ability to achieve them.

Regarding the sharing of objectives, it is easy to conclude

that it can be accomplished through the description of skills

in objective level. The opposite is also valid, being possible

to say that the generation of objective level statements is a

1

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

3Pin1-29



Figure 1: Sharing of robotic skills, as the transition between

objective level and task level descriptions.

necessary step for the sharing of objectives and, therefore,

skills.

Regarding the ability to achieve a certain objective i.e.

final state, it is vital to observe that, as any machine, robots

are only capable of executing sufficiently concrete and small

orders. This means that all commands send to the real

robot must be ultimately translated into joint level orders

before execution. Therefore, the ability to achieve a cer-

tain objective is held as being equivalent to the potential to

generate joint level orders based on a given final state.

Above reasoning leads to the conclusion that in order

to attain general and certain sharing of robotic skills, it is

necessary to (i) share objective level descriptions, and (ii)

generate joint level commands accordingly.

An interesting point to notice is that, although being im-

possible to share skills between different robots directly on

joint level, for those being extremely hardware dependent,

it is possible to obtain functional results when sharing di-

rectly on action point level. This happens in cases where

both robots have sufficiently similar hardware properties,

such as number of limbs and overall reachability, enough to

grant that the original procedure remains valid on the new

robot. However, these are limited cases, having general and

certain sharing of skills relying on, as previously stated, the

combination of objective and joint level descriptions.

3.2 Difficulties on Skill Sharing

The main difficulty imposed by the sharing of robotic

skills is the necessity for the machine to deal with objective

level descriptions, either in its extraction or in its conver-

sion into joint level commands. Differently from humans,

who act consciously of the cause and effect of each motion,

knowing what they should and should not do in order to

achieve certain objectives; robots – and machines, in gen-

eral – are only able to process concrete and simple orders,

which are executed without any concern on its original pur-

poses or potential side effects. This is due to the incapa-

bility for machines to comprehend the cause-consequence

nexus, widely known as the Frame Problem. The Frame

Problem can also be understood as the difficulty for artifi-

cial intelligence to classify phenomena between related and

unrelated [Matsuo 15], in more basic levels. Because it is

impossible to know the relations of a certain event with

other ones, it is impossible to know which phenomena is di-

rectly influenced by which event, being therefore impossible

to understand the consequences of actions taken by others

or themselves.

4. Past Work

In the past years great effort have been made to build

up objective level interfaces, in which programming would

be resumed to the definition of the desired final state, using

syntax resembling natural language or logical programming

like statements. Some examples of such task level pro-

gramming languages can be verified on [Lozano-Perez 77]

[Lieberman 77] [Okano 88], holding the merit of (i) intrin-

sically attaining the sharing of objectives, and (ii) easing

the act of programming itself, for providing methods closer

to the objective-oriented human behavior. However, even

making use of such interfaces, the necessity of assigning ap-

propriate joint level commands still prevails, making the

sharing of skills between different hardware unable to be

achieved.

When attempting to deal with the Frame Problem,

KnowRob [Tenorth 09] can be pointed out as being of no-

table interest. Knowrob is a knowledge database imple-

mented on Prolog and the Web Ontology Language OWL,

in which the analysis of its enormous database allows robots

to learn from experience and reason about the environment

and effects of its actions. However, although it is possible

to correctly assign subprocedures to higher level commands

using this method, it is still limited to specific cases.

Extraction of joint level commands from higher de-

scriptions also finds precedents on the inverse kinematics

field [Buss 04] [Nakamura 86], which enables conversion of

coordinate based action point level commands into joint

level orders. Even though inverse kinematics calculation

relies on the number of links and its length, being highly

hardware dependent, common interfaces capable of building

appropriate solvers based on each robot’s hardware descrip-

tions are observed [Matsui 90]. Use of such interfaces allows

writing programs fully in action point level, being able to

share overall procedures between robots. Although not able

to attain complete sharing of skills, sharing of procedures

can also be effective on platforms with similar hardware.

However, since inverse kinematics result depends on initial

position, such codes tend to rely on environment conditions,

generating unstable outcomes.

5. Joint - Action level Transition

In this work the extraction of action point level proce-

dures from joint level commands is tested. When combined

with common interfaces capable of translating coordinate

based commands back into joint level orders, as the ones in-

troduced above, this method makes possible to share proce-

dures of any robotic skill. This is done through source code
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and run-time data analysis, by (i) determining and translat-

ing motion patterns, and (ii) identifying each action and the

relations between them. Details of such method are given

on [Affonso 18b], which also proposes the use of a visual

and natural language-like programming based interface for

facilitating the manipulation of extracted procedures, mak-

ing therefore possible to share skills in a semi-automatic

way.

At the first step, motions patterns are identified by (i)

segmenting and labeling original code into minimal, uncon-

ditional divisions, and (ii) searching for common sets of

labels between executions. Each motion is then translated

into action point level descriptions by comparing end effec-

tor position relative to the robot base, target object center

and previous position. Coordinate systems capable of de-

scribing the end effector position in unchanged statements

are taken to be the application point of the motion, process

illustrated on Fig. 2.

Figure 2: Example of coordinates analysis on motion trans-

lation. Here, object centered coordinate system allows un-

changeable representation of end effector position, signaliz-

ing the application point.

At the second step, the heading label for each mo-

tion pattern is analyzed, identifying its trigger conditions

and other related motion patterns included on its context.

Nested structures containing several motion patterns re-

lated to the same conditional clause are interpreted as ac-

tions, and bound accordingly. Detailed procedure is given

on [Affonso 18a].

6. Experimentation

Experimentation is conducted on the simple domestic

task of cleaning up a table after a meal, removing dishes

and cutlery left on it. This task is schematically shown at

Fig. 3, and is executed a total of seven times for collecting

run-time data. Conditions of each trial are given at Table 1.

Without counting the action describing initial pose, five

motions patterns and three actions were extracted from

given task. Overall procedure, including the relation be-

tween such actions and motion patterns, is shown at Fig. 4.

Here, actions A, B and C are verified to correspond to

original actions of piling-up dishes, collecting cutlery and

picking-up (refer to Fig. 3).

Figure 3: Task of cleaning up table, executed by piling up

dishes, collecting cutlery and picking everything up.

Table 1: Conditions of conducted experiments.

trial number 1 2 3 4 5 6 7

number of plates 1 1 1 1 2 2 2

number of cutlery 0 1 1 2 0 0 1

pile plate executions 0 0 0 0 1 1 1

collect cutlery exec. 0 1 1 2 0 0 1

pick up executions 1 1 1 1 1 1 1

Figure 4: Flow diagram describing task’s overall proce-

dure, showing relations between extracted motion patterns

(blocks) and actions. Conditions are abbreviated.
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7. Conclusion

In this work the sharing of robotic skills was dealt with,

analyzing its current situation and problems that must be

dealt with.

From past work, we can conclude that now it is possible

to:

1. Share objectives between robots, by e.g. using task

level programming languages.

2. Translate coordinate based action point level descrip-

tions into joint level orders, by e.g. using inverse kine-

matics solvers.

In order to attain the complete sharing of skills among

different robots, however, it is also necessary to be capa-

ble of executing shared objectives, by assigning joint level

orders appropriately. This involves dealing with reasoning

on higher level objectives, being required to overcome the

Frame Problem – difficulty for machines to understand the

cause-consequence nexus – at some extent.

We also note that, although not being able to accomplish

sharing in general and certain ways, the extraction of ac-

tion point level procedures can be helpful, for being able to

both give functional results on similar hardware and attain

certain degree of hardware abstraction. When willing to

share a certain skill between robots, even if incomplete this

methods can save a lot of time and human work.

References

[Affonso 18a] Affonso, G. C., Okada, K., and Inaba, M.:

Detection of Motion Patterns and Transition Condi-

tions for Automatic Flow Diagram Generation of Robotic

Tasks, in International Conference on Intelligent Au-

tonomous Systems (IAS) (submitted on 2018)

[Affonso 18b] Affonso, G. C., Okada, K., and Inaba, M.:

Extraction and Modularization of Procedures Towards

Sharing of Robotic Skills, in International Conference

on Intelligent Robots and Systems (IROS) (submitted on

2018)

[Buss 04] Buss, S. R.: Introduction to inverse kinematics

with jacobian transpose, pseudoinverse and damped least

squares methods, IEEE Journal of Robotics and Automa-

tion, Vol. 17, No. 1-19, p. 16 (2004)

[Ferland 15] Ferland, F., Cruz-Maya, A., and Tapus, A.:

Adapting an hybrid behavior-based architecture with

episodic memory to different humanoid robots, in 24th

IEEE International Symposium on Robot and Human

Interactive Communication (RO-MAN), pp. 797–802

(2015)

[Grace Market Data 15] Grace Market Data, : Global Do-

mestic Service Robots Market Size And Trends To 2020

(August 2015)

[Jacobsson 16] Jacobsson, L., Malec, J., and Nilsson, K.:

Modularization of skill ontologies for industrial robots,

in Proceedings of 47st International Symposium on

Robotics(ISR), pp. 1–6 (2016)

[Kuniyoshi 07] Kuniyoshi, Y.: Adaptive and emergent imi-

tation as the fundamental of humanoid intelligence, Jour-

nal of the Robotics Society of Japan, Vol. 25, No. 5, pp.

671–677 (2007)

[Lieberman 77] Lieberman, L. I. and Wesley, M. A.: AU-

TOPASS: an automatic programming system for com-

puter controlled mechanical assembly, IBM Journal of

Research and Development, Vol. 21, No. 4, pp. 321–333

(1977)

[Lozano-Perez 77] Lozano-Perez, T. and Winston, P. H.:

LAMA: A Language for Automatic Mechanical Assem-

bly., in IJCAI, pp. 710–716 (1977)

[Matsui 90] Matsui, T. and Inaba, M.: Euslisp: An object-

based implementation of lisp, Journal of Information

Processing, Vol. 13, No. 3, pp. 327–338 (1990)

[Matsuo 15] Matsuo, Y.:

[Will Artificial Intelligence

overcome humans? What lies beyond Deep Learning.,

KADOKAWA (2015)

[Nakamura 86] Nakamura, Y. and Hanafusa, H.: Inverse

kinematic solutions with singularity robustness for robot

manipulator control, Journal of dynamic systems, mea-

surement, and control, Vol. 108, No. 3, pp. 163–171

(1986)

[Okano 88] Okano, A., Matsubara, H., and Inoue, H.: De-

sign and implementation of a task-oriented robot lan-

guage, Advanced Robotics, Vol. 3, pp. 177–191 (1988)

[Tenorth 09] Tenorth, M. and Beetz, M.: KnowRob –

knowledge processing for autonomous personal robots, in

International Conference on Intelligent Robots and Sys-

tems (IROS), pp. 4261–4266 (2009)

4

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

3Pin1-29


