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We propose a new algorithm to decompose a set of arbitrary complex spectra into independent basis spectra. Based on the non-
negative matrix factorization (NMF) algorithm we introduce a regulation term to a cost function in order to ensure the linear 
independency between basis spectra. We apply it to decompose a set of complex X-ray diffraction (XRD) spectra, which is 
typically obtained from high-throughput materials libraries. Each of the decomposed spectra nicely matches with one of the 
single phase spectra in an available XRD database. Alternatively, the method facilitates to find new phases when the decomposed 
spectra are not found in the database. These features are particularly useful for materials informatics where big spectrum data
obtained from experiment are to be handled.
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