
Gated Recurrent Neural Network with Tensor Product

Andros Tjandra∗1 Sakriani Sakti∗1 Ruli Manurung∗2 Mirna Adriani∗2

Satoshi Nakamura∗1

∗1 Nara Institute of Science and Technology, Japan ∗2 Universitas Indonesia, Indonesia

In the machine learning fields, Recurrent Neural Network (RNNs) has become a primary choice for modeling
sequential data such as text, speech, etc. To deal with long-term dependency in the long sequence, RNN utlizes
gating mechanism to improve the gradient flow between multiple time-steps and avoid exploding/vanishing gradient
problem. In the other hand, we would like to improve the representation power from RNN by using more expressive
operation compared to standard matrix multiplication and summation. In this paper, we proposed a new RNN
architecture with gating mechanism and tensor product between an input layer, a previous hidden layer, and a 3-rd
rank tensor weight and we called it as gated recurrent neural tensor network (GRURNTN).

1. Introduction

Gating mechanism helps recurrent neural network (RNN)

to model long-term dependency between each input time

step. By using gating mechanism, RNN model able to avoid

vanishing or exploding gradient [1]. On the other side, to

help RNN model learn more complex dataset or task, we

need to improve the expressiveness from our model. To get

more powerful representation on hidden layer, Pascanu et

al. [3] modified RNNs with an additional nonlinear layer

from input to the hidden. Socher et al. [2] proposes an-

other approach to model direct interaction between two in-

put layers with tensor products on recursive neural network

(RecNN). By using tensor product, we increase our RNN

model expressiveness by using second-degree polynomial in-

teractions, compared to first-degree polynomial interactions

on standard dot product followed by addition in common

RNNs architecture. In this paper we proposed a new RNN

architecture that combine the gating mechanism and tensor

product concepts to incorporate both advantages in a sin-

gle architecture, denotes as gated recurrent neural tensor

network (GRURNTN).

2. Proposed Approach

A gated recurrent unit (GRU) is a gated RNN with sim-

ilar properties to a long short term memory (LSTM). How-

ever, there are several differences: a GRU does not have

separated memory cells and instead of three gating layers,

it only has two gating layers: reset gates and update gates.

The GRU hidden layer at time t is defined by the following

equations:

rt = σ(xtWxr + ht−1Whr + br) (1)

zt = σ(xtWxz + ht−1Whz + br) (2)

h̃t = f(xtWxh + (rt � ht−1)Whh + bh) (3)

ht = (1− zt)� ht−1 + zt � h̃t (4)

Contact: Andros Tjandra, Nara Institute of Sci-

ence and Technology, 8916-5 Takayama-cho,

Ikoma, Nara 630-0192, JAPAN, 0743-72-5265,
andros.tjandra.ai6@is.naist.jp

where σ(·) is a sigmoid activation function, rt, zt are reset

and update gates, h̃t is the candidate hidden layer values

and ht is the hidden layer values at time-t. In spite of having

one fewer gating layer, the GRU can match LSTM’s per-

formance and its convergence speed convergence sometimes

outperformed LSTM.

In our proposed architecture, the tensor product oper-

ation is applied between the current input and previous

hidden layer multiplied by the reset gates for calculating

the current candidate hidden layer values. The calcula-

tion is parameterized by tensor weight. To construct a

GRURNTN, we defined the formulation as:

h̃t = f

([
xt (r � ht−1)

]
W

[1:d]
tsr

[
xt

(r � ht−1)

]

+xtWxh + (rt � ht−1)Whh + bh) (5)

where W
[1:d]
tsr ∈ R

(i+d)×(i+d)×d is a tensor weight for map-

ping the tensor product between the input-hidden layer, i

is the input layer size, and d is the hidden layer size. Al-

ternatively, in this paper we use a simpler bilinear form for

calculating h̃t:

h̃t = f
([

xt

]
W

[1:d]
tsr

[
(rt � ht−1)

]ᵀ
+xtWxh + (rt � ht−1)Whh + bh) (6)

where W
[i:d]
tsr ∈ R

i×d×d is a tensor weight. Each slice W
[i]
tsr is

a matrix R
i×d. The advantage of this asymmetric version

is that we can still maintain the interaction between the

input and hidden layers through a bilinear form. We reduce

the number of parameters from the original neural tensor

network formulation by using this asymmetric version. Fig.

1 visualizes the h̃t calculation in more detail.

3. Experiment

We used a PennTreeBank (PTB) corpus, which is a stan-

dard benchmark corpus for statistical language modeling.

A PTB corpus is a subset of the Wall Street Journal (WSJ)

corpus. In this experiment, we followed the standard pre-

processing step that was done by previous research [4].

1

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

4A2-01



Figure 1: Calculating candidate hidden layer h̃t from cur-

rent input xt and previous hidden layer multiplied by reset

gate r · ht1 based on Eq. 6.

We used the preprocessed PTB corpus from the RNNLM-

toolkit website ∗1.
We did two different language modeling tasks. First,

we experimented on a word-level language model and we

used perplexity (PPL) to measure our RNN performance

for word-level language modeling

PPL = 2−
1
N

∑N
i=1 log2 P (Xi|X1..i−1). (7)

Second, we experimented on a character-level language

model and we used the average number of bits-per-character

(BPC) to measure our RNN performance for character-level

language modeling

BPC = − 1

N

(
N∑
i=1

log2 p(Xi|X1..i−1)

)
. (8)

3.1 Experiment Models
In this experiment, we compared the performance

from our baseline models GRURNN with our proposed

GRURNTN. For the word-level language modeling task,

we used 256 hidden units for GRURNTN and 860 for

GRURNN. All of these models use 128 dimensions for

word embedding. The total number of free parameters

for GRURNN and GRURNTN were about 12 million. For

the character-level language modeling task, we used 256

hidden units for GRURNTN and 820 for GRURNN. All

of these models used 32 dimensions for character embed-

ding. The total number of free parameters for GRURNN

and GRURNTN was about 2.2 million. We constrained our

baseline GRURNN to have a similar number of parameters

as the GRURNTN model for a fair comparison.

4. Result

In this section, we report our experiment results on PTB

character-level and word-level language modeling using our

baseline models GRURNN and our proposed GRURNTN.

Table 1 shows BPC on PTB test set performed by our base-

line model, our proposed model and several published re-

sults. Our proposed model GRURNTN and LSTMRNTN

∗1 http://www.rnnlm.org/

Table 1: PennTreeBank test set BPC
Model Test BPC

HF-MRNN [4] 1.41

sRNN [3] 1.41

DOT(S)-RNN [3] 1.39

GRURNN (our baseline) 1.39

GRURNTN (proposed) 1.33

Table 2: PennTreeBank test set PPL
Model Test PPL

N-Gram [4] 141

RNNLM [4] 124.7

sRNN [3] 110.0

DOT(S)-RNN [3] 107.5

GRURNN (our baseline) 97.78

GRURNTN (proposed) 87.38

outperformed both baseline models. GRURNTN reduced

the BPC from 1.39 to 1.33 (0.06 absolute / 4.32% relative

BPC) from the baseline GRURNN. Overall, GRURNTN

outperformed our baseline model and other published mod-

els on the character-level language modeling task.

Table 2 shows the PPL on PTB test set performed by

our baseline model, proposed model, and several published

results. GRURNTN reduced the perplexity from 97.78 to

87.38 (10.4 absolute / 10.63% relative PPL) over the base-

line GRURNN. Overall, GRURNN outperformed our base-

line models as well as the other models significantly.

5. Conclusion

We presented a new RNN architecture by combining the

gating mechanism and tensor product concepts. From our

experiment on the PTB corpus, our proposed models out-

performed the baseline models with a similar number of

parameters in character-level language modeling and word-

level language modeling tasks. In a character-level language

modeling task, GRURNTN obtained 0.06 absolute BPC re-

duction over GRURNN (4.32% relative). In a word-level

language modeling task, GRURNTN obtained 10.4 abso-

lute PPL (10.63% relative) reduction over GRURNN.

6. Acknowledgment

Part of this work was supported by JSPS KAKENHI Grant Num-
bers JP17H06101 and JP17K00237

References
[1] Hochreiter, Sepp et al. Gradient flow in recurrent nets: the

difficulty of learning long-term dependencies (2001).

[2] Socher, Richard et al. Reasoning with neural tensor networks
for knowledge base completion. Advances in Neural Information
Processing Systems (2013): 926-934

[3] Pascanu, Razvan et al. How to construct deep recurrent neural

networks. arXiv preprint arXiv:1312.6026 (2013)

[4] Mikolov, Tom. Statistical language models based on neural net-

works (2012)

2

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

4A2-01


