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The goal in this research is to summarize the dialog contents which are collected through interaction with a
robot interviewer by combining speech recognition and multimodal perception techniques. The key technique is to
identify important statements in the dialog contents. We focus on using nonverbal behaviors including prosody,
gesture and posture for the prediction of the important statements that user would like to emphasize. In this study,
we collected two types of the annotation data set for important statements. One data is annotated by third party
annotator (impression by outsider ) and another data is annotated by interviewee (self answering). We investigated
the difference of recognition accuracy in these two tasks using these annotations.

1.

[8]

15

: 923-

1211 0761511201 okada-

s@jaist.ac.jp

2.

[1]

F 0.7,

0.7

45

Berna [2]

TF-IDF

McCowan [3]

[4]

2

2

1

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

4D1-OS-14c-02



1:

3.

3.1

Pepper∗1

( ) Pepper

Pepper

Pepper

Kinect v2 Web

Kinect v2

Web

( )

WoZ

1

Kinect v2

( )

20 60

30

3.2

[

] 2

Pepper [6]

[8]

∗1 Pepper, https://www.softbank.jp/robot/consumer/products/

5 2

30 15 15

2-1 2-15

4.

Julius[5]

Julius

50

??

1

1 0

z ( )

4.1
Bing Speech API ∗2

Mecab

1

4 BingSpeechAPI

55.2

∗2 Bing Speech API, https://azure.microsoft.com/ja-
jp/services/
cognitive-services/speech/

2

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

4D1-OS-14c-02



4.2

Kinect v2

Kinect v2

Kinect v2

X Y Z

72

4.3

Julius Julius

Speech feature

extraction code ∗3

(MFCC)

1

MFCC

5.

t

5

5.1
15

SVM Random Forest XGBoost RNN

XGBoost XGBoost

XGBoost kaggle

1

t / t − 1

t t− 1

2

5

Pre, Diff, Abs, Rate

2 2-1 2-15 15

14 1

15

Accuracy XGBoost

3

7

∗3 Speech feature extraction code,
http://groupmedia.mit.edu/data.php
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