CNNによる感情認識における生理心理的制約の効果

Effects of Psychophysiological Constraints on Emotion Recognition using CNN

野村 太輝*1 Taiki Nomura

揮^{*1} 森田 純哉^{*2} ıra Junya Morita 平山 高嗣*³ Takatsugu Hirayama 榎堀 優*³ Yu Enokibori 間瀬 健二*³ Kenji Mase

*1名古屋大学 大学院 情報科学研究科

*2静岡大学 情報学部

Graduate School of Information Science, Nagoya University

Faculty of Informatics Shizuoka University

*3名古屋大学大学院情報学研究科

Graduate School of Informatics, Nagoya University

In this research, we focus on the role of constraints introduced from the psychophysiological studies to emotional recognition using EEG (Electroencephalogram) and Deep Learning. We especially focus on feature extractions using CNN (Convolutional Neural Network) by applying the frequency analysis methods for EEG. In the experiments, our method showed the possibility of classifying positive, neutral and negative emotional states from the features of EEG frequency analysis, and it was also shown that simple constraints like reducing input features are not always effective. Although our proposed method did not exceed the performance of a standard machine learning method, visualization methods of CNN reveal important components relate to the recognition of target emotion from frequency, spatial and temporal axes of EEG. Summarizing the results, it was suggested that our method is not only useful for developing classifiers but also effective to analyze the relationships of EEG and emotion states.

1. 研究背景

脳波(EEG:Electroencephalogram)は、人間の主観的状態 に関する有益な情報を持つと考えられてきた.生理心理学分 野での人の脳内部機能の調査研究や、人間と機械のコミュニ ケーションの形態である BCI(Brain Computer Interface)な ど、様々な場面で EEG の利用が取り組まれている.しかし、 EEG は脳全体から複数の異なる主観的状態の情報を保持する 電位の集積として計測される上に、体動や環境変化などを原因 としたノイズがのり易く、実利用が困難なデータだと考えられ てきた.この問題に対して、生理心理学者達は EEG を複数の 主観状態活動を示す電位の観点から周波数帯域成分に分離し、 EEG の電極位置と独立した成分とみなして分析対象の主観的 状態との相関が検討されてきた.

一方で,近年では深層ニューラルネットワーク (DNN: Deep Neural Network) を用いた研究が盛んに行われている.DNN は未加工に近い入力特徴から特徴抽出器をボトムアップに学 習が可能という利点を持っており,画像,音声及び文章認識と いった様々な分野で従来手法に比べて高い性能を示してきた [1]. EEG に対して DNN を適用する研究も取り組まれている [2, 3].しかし,これらの研究はあくまで未加工の EEG から DNN により特徴抽出器を学習可能かの検証を目的としている. そのため,これまでに EEG と主観的状態との様々な関係が発 見されてきたにも関わらず,DNN の設計にこれらの知見は考 慮されていない.

そこで、本研究では EEG による快不快感情の認識に対し て、生理心理学的な知見を活用し DNN を設計することに焦点 を当てる.生理心理学分野での解析から得られた EEG の活動 と快不快感情との関係の知見を DNN の設計に制約として加 え、これらの知見の活用が主観的状態の認識に有効に働くかを 検証することが本研究の目的である.

2. 関連研究

EEG は過去数十年,生理心理学の分野で脳活動と人間の主 観的状態との関係性を調査するために利用されてきた.その中 で,脳の部位,あるいは周波数帯域別の活動変化(δ波: 0.5-3Hz, θ波: 4-7Hz, α波: 8-13Hz, β波: 14-30Hz, 及び γ波: 31-50Hz)が,実験参加者の主観的状態と関連することが報告 がされてきた.たとえば,快不快感情に関して,快感情を抱い た時には左前頭部と前頭部全域の θ 波と α 波が活性化される が,不快感情を抱いた時に右前頭部の θ 波と α 波が活性化さ れる事を報告されている [4, 5].

一方で,近年の機械学習技術の発展に伴い,EEGからの感 情認識を目的に機械学習を適用する研究も取り組まれている. Gao らは 4 種類の感情識別に関して未加工の EEG を入力と して 3 層の RBM(Restricted Bortzman Machine)を適用し, SVM などの従来手法との識別性能の比較を行った.その結果, RBM は従来手法に比べて優れた識別性能を得ることを示した [2]. Schirrmeister らは,4つの運動イメージの想起と関係した EEG の分類に CNN(Convolutional Neural Network)を適用 した.CNN によって FBCSP(Filter Bank Common Spatial Patterns)と同等以上の識別性能を得られることと,CNN は 未加工の EEG から周波数帯域成分を学習可能であることを示 した [3].

3. ネットワーク構成

生理心理学分野の解析では, EEG の周波数帯域の軸と電極 位置の空間軸はそれぞれ独立した成分として解析に用いられて きた.よって, EEG による感情識別に, 解析から得られた知 見を取り入れる場合, 識別器に利用する特徴を, 空間軸, 周波 数軸に関して独立に抽出することが有効と考えられる.この考 えのもと,本研究では,空間軸,周波数軸,時間軸の各軸に対 応した畳み込み層を有する CNN を設計した.

連絡先: 森田 純哉, 静岡大学 情報学部, 静岡県浜松市中区城 北3丁目5-1, j-morita@inf.shizuoka.ac.jp

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

図 1: 各軸間で独立に特徴抽出する CNN の設計

3.1 各軸間で独立な特徴抽出する CNN の設計

本研究で提案する各軸間で独立した特徴抽出を行う CNN の 概要を図 1 に示す.入力特徴は、Depth を 1、Width を時間 軸のサンプル数 384、Height を利用する電極数 N_c と周波数 帯域の数 N_f の積 $N_f * N_c$ として設計する.この入力特徴に 対して、仮に n-1 回の時間軸の畳み込みを行う場合には中間層 の次元数は $D_{n-1} \times (N_f * N_c) \times t_{n-1}$ となる (×:次元の違い).

このN回畳み込み後の中間層に対して先に空間軸での特徴 抽出を行う場合には、畳み込み層 Kernel が N_c かつ Stride が N_c となる設計を行う. 先に空間軸での畳み込みを行う場合に は Kernel が $N_c \times 1$ かつ Stride が $N_c \times 1$ の畳み込み層を設計 する. これによる畳み込みの結果、 $D_n \times N_f \times t_n (= t_{n-1})$ の 中間層が得られる. その後、更に m-1 回、時間軸のみでの畳み 込みを行った $D_{n+m-1} \times N_f \times t_{n+m-1}$ の中間層に対してでも、 Kernel が $N_f \times 1$ の畳み込み層を設計・適用することで空間軸の みからの特徴抽出による中間層 $D_{n+m} \times 1 \times t_{n+m} (= t_{n+m-1})$ が得られる.

3.2 ネットワーク設計

以上を踏まえ,本研究では時間軸・空間軸・周波数帯域軸の 順に畳み込む T-S-F-Net,空間軸・周波数帯域軸・時間軸の順 に畳み込む S-F-T-Net,時間軸・周波数帯域軸・空間軸の順に 畳み込む T-F-S-Net 及び周波数帯域軸・空間軸・時間軸の順 に畳み込む F-S-T-Net の軸間で畳み込み順が異なる4種類の CNN を設計した.各 CNN の設計に用いた具体的なパラメー タを表 1,2,3,4 にそれぞれ示す.

4. 評価実験

4.1 実験の目的

本実験は EEG の周波数帯域成分を用いるアプローチを CNN による識別器の設計に活用することの有効性の検証と、生理心 理学的な知見の CNN の設計への活用が感情の認識に有効に働 くかの検証を目的する.これらの項目の検証を行うため、本実 験では独自に収集した写真閲覧時の EEG と快不快感情の評定 データを用いる [6].

4.2 実験条件

先行研究では、EEG に混入するノイズの低減を目的として、 識別対象の主観的状態と関連の強い成分のみを抽出することが 行われていた [2, 7]. この知見を受け、本実験では、過去の生理 心理学的知見を流用することで周波数帯域成分と電極位置に関 わるそれぞれの入力特徴を削減する. 周波数帯域成分における 生理心理学的な知見の流用として、 $ALL \times ALL$, $\theta\alpha \times ALL$, $\theta\alpha \times FRONTAL$, $\theta\alpha \times EFFECT$ をそれぞれ設計した. 各 特徴の概要について表 5 に示す.

構成した畳み込み順の異なる 4 種類の CNN, T-S-F-Net, S-F-TNet, T-F-SNet 及び F-S-T-Net に対して, 4 種類の入 力特徴 ALL × ALL, $\theta \alpha \times ALL$, $\theta \alpha \times FRONTAL$ 及び $\theta \alpha \times EFFECT$ をそれぞれ用いた際の識別性能について比較

表 1: T-S-F-Net のパラメータ				
Type	Structure			
Input	$Denth \times Height(N_{f} * N_{c}) \times Width(Times)$			
Time Conv 1	Kernel:8 \times 1 \times 12 Stride:1 \times 3 pad=0 elu			
Time Conv 2	Kernel:8 \times 1 \times 12, Stride:1 \times 3, pad=0, elu			
Time Conv 3	Kernel: $8 \times 1 \times 12$, Stride: 1×3 , pad=0, elu			
Time Pool	Kernel:1 \times 3,Stride:1 \times 3, pad=0, Max			
Batch Norm 1	Dimensions:8			
Dropout 1	Wight Decay:0.5			
Spacial Conv	Kernel: $32 \times N_c \times 1$, Stride: $N_c \times 1$, pad=0, elu			
Frequency Conv	Kernel:32 × N_f × 1, Stride: N_f × 1, pad=0, elu			
Batch Norm 2	Dimensions:32			
EC 1	Wight Decay:0.5			
FC 2	Classes, Softmax			
=				
表 2: S-F-T-Net のバフメータ				
Type	Structure			
Input	$Depth \times Height(N_f * N_c) \times Width(Times)$			
Spacial Conv	Kernel:16 × N_c × 1, Stride: N_c × 1, pad=0, elu			
Frequency Conv	Kernel:16 × N_f × 1, Stride: N_f × 1, pad=0, elu			
Batch Norm 1	Dimensions:16			
Dropout 1	Wight Decay:0.5			
Time Conv 1	Kernel: $16 \times 1 \times 12$, Stride: 1×3 , pad=0, elu			
Time Conv 2	Kernel: 10 \times 1 \times 12, Stride: 1 \times 3, pad=0, elu Kernel: 32 \times 1 \times 12, Stride: 1 \times 3, pad=0, elu			
Time Pool	Kernel: 1×3 . Stride: 1×3 . pad=0. Max			
Batch Norm 2	Dimensions:32			
Dropout 2	Wight Decay:0.5			
FC 1	96, elu, Dropout:0.5			
EC 2	Classes, Softmax			
102	0			
表	3: T-F-S-Net のパラメータ			
表	3: T-F-S-Net のパラメータ Structure			
天 天 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王	3: T-F-S-Net $\mathcal{O}/\sqrt[n]{\mathcal{F}}/\mathcal{F}$ Structure Depth \times Height($N_{\ell} * N_{\ell}$) \times Width(Times)			
天 天 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王	3: T-F-S-Net $\mathcal{O}/\sqrt[n]{\mathcal{I}}\mathcal{I}/\mathcal{I}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12. Stride:1 × 3. pad=0. elu			
下で2 表 Type Input Time Conv 1 Time Conv 2	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}$ Structure Depth \times Height($N_f * N_c$) \times Width(Times) Kernel:8 $\times 1 \times 12$, Stride:1 $\times 3$, pad=0, elu Kernel:8 $\times 1 \times 12$, Stride:1 $\times 3$, pad=0, elu			
下で2 表 Type Input Time Conv 1 Time Conv 2 Time Conv 3	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{J}}/\sqrt[3]{\mathcal{J}}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu			
Type Type Input Time Conv 1 Time Conv 2 Time Conv 3 Time Pool	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{J}}/\sqrt[3]{\mathcal{J}}$ Structure Depth \times Height($N_f * N_c$) \times Width(Times) Kernel: $8 \times 1 \times 12$, Stride: 1×3 , pad=0, elu Kernel: $8 \times 1 \times 12$, Stride: 1×3 , pad=0, elu Kernel: 1×3 , Stride: 1×3 , pad=0, Max			
天 Type Input Time Conv 1 Time Conv 2 Time Conv 3 Time Pool Batch Norm 1	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{J}}/\sqrt[3]{\mathcal{J}}/\sqrt[3]{\mathcal{J}}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:1 × 3, Stride:1 × 3, pad=0, elu Kernel:1 × 3, Stride:1 × 3, pad=0, Max Dimensions:8			
Type Input Time Conv 1 Time Conv 2 Time Pool Batch Norm 1 Dropout 1	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{3}/\sqrt[3]{3}/\sqrt[3]{3}$ Structure Depth × Height(N _f * N _c) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, lu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, lu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, lu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, lu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, lu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, lu			
Type Type Input Time Conv 1 Time Conv 2 Time Conv 3 Time Pool Batch Norm 1 Dropout 1 Frequency Conv	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}$ Structure $\begin{array}{c} Depth \times Height(N_f * N_c) \times Width(Times) \\ Kernel:8 \times 1 \times 12, Stride:1 \times 3, pad=0, elu \\ Kernel:8 \times 1 \times 12, Stride:1 \times 3, pad=0, elu \\ Kernel:8 \times 1 \times 12, Stride:1 \times 3, pad=0, elu \\ Kernel:1 \times 3, Stride:1 \times 3, pad=0, Max \\ Dimensions:8 \\ Wight Decay:0.5 \\ Kernel:32 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1, Stride:N_f \times 1, pad=0, elu \\ Kernel:22 \times N_f \times 1$			
Type Type Input Time Conv 1 Time Conv 2 Time Conv 3 Time Pool Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Potch Norm 2	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\pi}/\sqrt[3]{\pi}/\sqrt[3]{\pi}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:1 × 3, Stride:1 × 3, pad=0, elu Kernel:2 × $N_f \times 1$, Stride: $N_f \times 1$, pad=0, elu Kernel:32 × $N_c \times 1$, Stride: $N_f \times 1$, pad=0, elu Kernel:32 × $N_c \times 1$, Stride: $N_c \times 1$, pad=0, elu			
Type Time Conv 1 Time Conv 2 Time Conv 3 Time Pool Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 2 Dropout 2	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{3}/\sqrt[3]{3}/\sqrt[3]{3}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:3 × N_c × 1, Stride:N_c × 1, pad=0, elu Kernel:32 × N_c × 1, Stride:N_c × 1, pad=0, elu Kernel:32 × N_c × 1, Stride:N_c × 1, pad=0, elu Dimensions:32 Wight Decay:0.5			
Type Type Input Time Conv 1 Time Conv 2 Time Pool Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 2 Dropout 2 FC 1	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{3}/\sqrt[3]{3}/\sqrt[3]{3}$ Structure Depth × Height(N _f * N _c) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:1 × 3, Stride:1 × 3, pad=0, dux Dimensions:8 Wight Decay:0.5 Kernel:32 × N _f × 1, Stride:N _f × 1, pad=0, elu Kernel:32 × N _f × 1, Stride:N _f × 1, pad=0, elu Dimensions:32 Wight Decay:0.5 96, elu, Dropout:0.5			
Type Time Conv 1 Time Conv 2 Time Conv 3 Time Pool Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 2 Dropout 2 FC 1 FC 2	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{J}}/\sqrt[3]{\mathcal{J}}/\sqrt[3]{\mathcal{J}}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:1 × 3.Stride:1 × 3, pad=0, elu Kernel:32 × N_f × 1, Stride: N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_c × 1, pad=0, elu Might Decay:0.5 96, elu, Dropout:0.5 Classes, Softmax			
FC 2 Type Input Time Conv 1 Time Conv 3 Time Pool Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 2 Dropout 2 FC 1 FC 2	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\pi}/\sqrt[3]{\pi}/\sqrt[3]{\pi}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:1 × 3, Stride:1 × 3, pad=0, elu Kernel:32 × N_f × 1, Stride: N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_c × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_c × 1, pad=0, elu Might Decay:0.5 96, elu, Dropout:0.5 Classes, Softmax 4: F.S.T.Not $\mathcal{O}/\sqrt[3]{\pi}/\sqrt[3]{\pi}/\sqrt[3]{\pi}$			
FC 2 Type Input Time Conv 1 Time Conv 2 Time Pool Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 2 Dropout 2 FC 1 FC 2	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:3 × N_c × 1, Stride:N_c × 1, pad=0, elu Kernel:32 × N_c × 1, Stride:N_c × 1, pad=0, elu Kernel:32 × N_c × 1, Stride:N_c × 1, pad=0, elu Dimensions:32 Wight Decay:0.5 96, elu, Dropout:0.5 Classes, Softmax 4: F-S-T-Net $\mathcal{O}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{A}}$			
FC 2 Type Input Time Conv 1 Time Conv 2 Time Pool Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 2 Dropout 2 FC 1 FC 2 Type	3: T-F-S-Net $\mathcal{O}/\sqrt{\Im} \cancel{X} - \cancel{A}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:3 × 3, Stride:1 × 3, pad=0, Max Dimensions:8 Wight Decay:0.5 Kernel:32 × N_c × 1, Stride: N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_c × 1, pad=0, elu Dimensions:32 Wight Decay:0.5 96, elu, Dropout:0.5 Classes, Softmax 4: F-S-T-Net $\mathcal{O}/\sqrt{\Im} \cancel{X} - \cancel{A}$ Structure Decth × M_s(M_c N_c) × Width(Times)			
大口 大口 Type Input Time Conv 1 Time Conv 2 Time Pool Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 2 Dropout 2 FC 1 FC 2 天ype Input	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:1 × 3.Stride:1 × 3, pad=0, elu Kernel:32 × N_f × 1, Stride: N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_f × 1, pad=0, elu Dimensions:32 Wight Decay:0.5 96, elu, Dropout:0.5 Classes, Softmax 4: F-S-T-Net $\mathcal{O}/\sqrt[3]{\mathcal{I}}/\mathcal{I}/\mathcal{I}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kennel:6 × N × 1, Stride: N_c × 1 = z=-0, zh			
FC 2 Type Input Time Conv 1 Time Conv 2 Time Conv 3 Time Conv 1 Batch Norm 1 Dropout 1 Frequency Conv Batch Norm 2 Dropout 2 FC 1 FC 2 Type Input Frequency Conv Spacial Conv	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{3}/\sqrt[3]{3}/\sqrt[3]{3}}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:32 × N_f × 1, Stride:N_f × 1, pad=0, elu Kernel:32 × N_f × 1, Stride:N_f × 1, pad=0, elu Kernel:32 × N_f × 1, Stride:N_f × 1, pad=0, elu Dimensions:32 Wight Decay:0.5 96, elu, Dropout:0.5 Classes, Softmax 4: F-S-T-Net $\mathcal{O}/\sqrt[3]{3}/\sqrt[3]{3}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:16 × N_f × 1, Stride:N_f × 1, pad=0, elu			
大口 Type Input Time Conv 1 Time Conv 2 Time Conv 3 Time Conv 1 Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 2 Dropout 2 FC 1 FC 2 Type Input Frequency Conv Spacial Conv Batch Norm 2	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:32, N_f × 1, Stride:N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride:N_f × 1, pad=0, elu Might Decay:0.5 96, elu, Dropout:0.5 Classes, Softmax 4: F-S-T-Net $\mathcal{O}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}}$ Kernel:16 × $N_f \times 1$, Stride: $N_f \times 1$, pad=0, elu Kernel:16 × $N_c \times 1$, Stride: $N_f \times 1$, pad=0, elu Kernel:16 × $N_c \times 1$, Stride: $N_f \times 1$, pad=0, elu Kernel:16 × $N_c \times 1$, Stride: $N_c \times 1$, pad=0, elu Kernel:16 × $N_c \times 1$, Stride: $N_c \times 1$, pad=0, elu			
大口 大口 Type Input Time Conv 1 Time Conv 2 Time Pool Batch Norm 1 Dropout 2 FC 1 FC 2 Type Input Frequency Conv Spacial Conv Batch Norm 2 Dropout 2 FC 1 FC 2 Type Input Frequency Conv Spacial Conv Batch Norm 1 Dropout 1	$\begin{array}{c} \text{Str-F-S-Net} & \mathcal{O}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}}\\ & \text{Structure} \\ \hline \\ & \text{Depth} \times Height(N_f \ast N_C) \times Width(Times) \\ \text{Kernel:8} \times 1 \times 12, \text{Stride:1} \times 3, \text{pad=0}, \text{elu} \\ \text{Kernel:8} \times 1 \times 12, \text{Stride:1} \times 3, \text{pad=0}, \text{elu} \\ \text{Kernel:8} \times 1 \times 12, \text{Stride:1} \times 3, \text{pad=0}, \text{elu} \\ \text{Kernel:1} \times 3, \text{Stride:1} \times 3, \text{pad=0}, \text{elu} \\ \text{Kernel:32} \times N_f \times 1, \text{Stride:N}_f \times 1, \text{pad=0}, \text{elu} \\ \text{Kernel:32} \times N_f \times 1, \text{Stride:N}_f \times 1, \text{pad=0}, \text{elu} \\ \text{Kernel:32} \times N_c \times 1, \text{Stride:N}_f \times 1, \text{pad=0}, \text{elu} \\ \text{Dimensions:32} \\ \text{Wight Decay:0.5} \\ \hline 96, \text{elu}, \text{Dropout:0.5} \\ \text{Classes, Softmax} \\ \hline 4: \text{ F-S-T-Net} & \mathcal{O}/\sqrt[3]{\mathcal{I}}/\mathcal{J}/\mathcal{A} \\ \hline \\ \hline \\ \hline Depth \times Height(N_f \ast N_C) \times Width(Times) \\ \text{Kernel:16} \times N_f \times 1, \text{Stride:N}_f \times 1, \text{pad=0}, \text{elu} \\ \text{Kernel:16} \times N_f \times 1, \text{Stride:N}_f \times 1, \text{pad=0}, \text{elu} \\ \text{Kienel:16} \times N_c \times 1, \text{Stride:N}_c \times 1, \text{pad=0}, \text{elu} \\ \text{Kienel:16} \times N_c \times 1, \text{Stride:N}_c \times 1, \text{pad=0}, \text{elu} \\ \text{Wight Decay:0.5} \\ \hline \end{array}$			
FC 2 Type Input Time Conv 1 Time Conv 2 Time Conv 3 Time Conv 1 Batch Norm 1 Dropout 1 Frequency Conv Batch Norm 2 Dropout 2 FC 1 FC 2 Type Input Frequency Conv Spacial Conv Batch Norm 1 Dropout 1 Tropout 1	$\begin{array}{c} \text{Structure} \\ \hline \\ \hline \\ \hline \\ Structure \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ $			
大口 Type Input Time Conv 1 Time Conv 3 Time Conv 3 Time Conv 1 Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 2 Dropout 2 FC 1 FC 2 Type Input Frequency Conv Spacial Conv Batch Norm 1 Dropout 2 Type Input Frequency Conv Spacial Conv Batch Norm 1 Dropout 1 Time Conv 1 Time Conv 2	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{F}}/\sqrt[3]{\mathcal{F}}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:32 × N_c × 1, Stride: N_c × 1, pad=0, Max Dimensions:8 Wight Decay:0.5 Kernel:32 × N_c × 1, Stride: N_c × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_c × 1, pad=0, elu Dimensions:32 Wight Decay:0.5 96, elu, Dropout:0.5 Classes, Softmax 4: F-S-T-Net $\mathcal{O}/\sqrt[3]{\mathcal{F}}/\mathcal{A}/\mathcal{A}$ Kernel:16 × N_f × 1, Stride: N_f × 1, pad=0, elu Kernel:16 × N_f × 1, Stride: N_f × 1, pad=0, elu Kernel:16 × N_c × 1, Stride: N_c × 1, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu			
FC 2 Type Input Time Conv 1 Time Conv 3 Time Pool Batch Norm 1 Dropout 1 Frequency Conv Batch Norm 2 Dropout 2 FC 1 FC 2 Type Input Frequency Conv Spacial Conv Batch Norm 1 Tropout 1 Tropout 1 Dropout 1 Time Conv 1 Time Conv 2 Time Conv 3	$\begin{array}{c} \text{Structure} \\ \hline \\ \hline \\ Structure \\ \hline \\ \hline \\ Depth \times Height(N_f \ast N_c) \times Width(Times) \\ \hline \\ Kernel:8 \times 1 \times 12, \text{ Stride:1} \times 3, \text{pad=0, elu} \\ \hline \\ Kernel:8 \times 1 \times 12, \text{ Stride:1} \times 3, \text{pad=0, elu} \\ \hline \\ Kernel:8 \times 1 \times 12, \text{ Stride:1} \times 3, \text{pad=0, elu} \\ \hline \\ Kernel:8 \times 1 \times 12, \text{ Stride:1} \times 3, \text{pad=0, elu} \\ \hline \\ Kernel:1 \times 3, \text{Stride:1} \times 3, \text{pad=0, elu} \\ \hline \\ \\ Kernel:32 \times N_f \times 1, \text{ Stride:} N_f \times 1, \text{pad=0, elu} \\ \hline \\ \\ Kernel:32 \times N_c \times 1, \text{ Stride:} N_f \times 1, \text{pad=0, elu} \\ \hline \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\$			
FC 2 Type Input Time Conv 1 Time Conv 2 Time Conv 3 Time Conv 1 Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 2 Dropout 2 FC 1 FC 2 Type Input Frequency Conv Spacial Conv Batch Norm 1 Dropout 2 Type Input Frequency Conv Spacial Conv Batch Norm 1 Dropout 2 Time Conv 1 Time Conv 2 Time Conv 3 Time Conv 3 Time Pool	$\begin{array}{c} \text{Structure} \\ \hline \\ $			
表 Type Input Time Conv 1 Time Conv 3 Time Conv 3 Time Conv 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 2 Dropout 2 FC 1 FC 2 Type Input Frequency Conv Spacial Conv Batch Norm 1 Dropout 1 Frequency Conv Spacial Conv Batch Norm 1 Dropout 1 Time Conv 1 Time Conv 2 Time Conv 3 Time Pool Batch Norm 2	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{3}/\sqrt[3]{3}/\sqrt[3]{3}}$ 3: T-F-S-Net $\mathcal{O}/\sqrt[3]{3}/\sqrt[3]{3}/\sqrt[3]{3}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:32 × $N_f \times 1$, Stride: $N_f \times 1$, pad=0, elu Kernel:32 × $N_c \times 1$, Stride: $N_c \times 1$, pad=0, elu Kernel:32 × $N_c \times 1$, Stride: $N_c \times 1$, pad=0, elu Dimensions:32 Wight Decay:0.5 96, elu, Dropout:0.5 Classes, Softmax 4: F-S-T-Net $\mathcal{O}/\sqrt[3]{3}/\sqrt[3]{3}/\sqrt[3]{3}$ Estructure Depth × Height($N_f * N_c$) × Width(Times) Kernel:16 × $N_f \times 1$, Stride: $N_f \times 1$, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride: 1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride: 1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride: 1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride: 1 × 3, pad=0, elu Kernel:12 × 3.Stride: 1 × 3, pad=0, max Dimensions:32			
FC 2 Type Input Time Conv 1 Time Conv 2 Time Conv 3 Time Pool Batch Norm 1 Dropout 1 Frequency Conv Batch Norm 2 Dropout 2 FC 1 FC 2 Type Input Frequency Conv Spacial Conv Batch Norm 1 Dropout 2 Type Input Frequency Conv Spacial Conv 1 Dropout 1 Time Conv 2 Time Conv 3 Time Conv 1 Time Conv 3 Time Conv 4 Dropout 2	3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}$ 3: T-F-S-Net $\mathcal{O}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}$ Structure Depth × Height($N_f * N_c$) × Width(Times) Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:8 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:32 × N_f × 1, Stride: N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_f × 1, pad=0, elu Kernel:32 × N_c × 1, Stride: N_f × 1, pad=0, elu Might Decay:0.5 96, elu, Dropout:0.5 Classes, Softmax 4: F-S-T-Net $\mathcal{O}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}/\sqrt[3]{\mathcal{I}}$ Kernel:16 × N_f × 1, Stride: N_f × 1, pad=0, elu Kernel:16 × N_f × 1, Stride: N_f × 1, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 3, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 1 × 12, Stride:1 × 3, pad=0, elu Kernel:16 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×			

表 5: 設定した 4 種類の入力特徴の概要

特徵	周波数带域	電極位置	概要
$ALL \times ALL$	θ 波, α 波, β 波及び γ 波	to a land a land	 θ 波, α 波, β 波及び γ 波の 4 種類全ての周波数帯域の全ての電極位置. (次元数:1 × 56 × 384)
$\theta \alpha \times ALL$	θ 波と α 波	A DE	θ 波, α 波の全ての電極位置. (次元 数:1 × 28 × 384)
$\theta \alpha \times FRONTAL$	θ 波と α 波	A CONTRACTOR	快不快と関連を持つと言われる θ 波と α 波の前頭葉の 8 つの電極位置 (AF3, F7, F3, FC5, FC6, F4, F8 及 び AF4). (次元数:1 × 16 × 384)
$\begin{array}{c} \theta \alpha \times \\ EFFECT \end{array}$	θ 波と α 波	A STATE	快不快と関連を持つと言われる θ 波と α 波の Cohen の効果量の大きかっ た 8 つの電極位置 (AF3, F7, F3, FC5, P7, O2, P8 及び F4). (次 元数:1 × 16 × 384)

する.更に,提案手法の有効性を検証する上でのベースラインとして,機械学習分野の古典的な手法である SVM と比較する. SVM の入力には4種類の入力特徴の時間軸方向のみ平均(それぞれ 56,28,16 及び 16 次元)を用いた.

4.2.1 比較条件およびその実験目的との関連

本実験では、入力群により T-S-F-Net, S-F-T-Net, T-F-S-Net 及び F-S-T-Net の各 CNN がチャンスレートを十分に 超え、CNN により快不快感情を学習可能であるかを検証する。 更に、SVM との比較により既存手法に対する提案手法の有効 性を検証する.前述の検証により EEG の周波数帯域成を用い るアプローチを CNN による識別器の設計に活用することの有

図 2: 識別精度比較実験結果

効性を評価する.

本研究の CNN では入力特徴の空間軸と周波数帯域軸の次 元設計に依存する形で CNN の全体構造が変化する.この性質 を利用し,生理心理学分野での知見に基づく入力特徴に依存 する形で,快不快に関係する周波数帯域・電極位置に関する知 見を CNN 設計に反映させる.各入力特徴ごとでの CNN 群の 識別性能への影響を検証することで,生理心理学的な知見の CNN の設計への活用の有効性を評価する.

4.3 実験方法

実験では独自に収集したデータセットの快不快感情の評定 から、不快・快・平常の3クラスの識別問題による識別精度 を比較した.各クラス 609 個のデータを評価に用い、その内 の4/5 学習用データ(内3/4を学習データ、1/4を検証データ、 1/5をテストデータ)とした5分割交差検証を行った.また、 電極位置、周波数帯域及び時点に関わらず、全学習用データの 入力特徴の全成分の平均と標準偏差を用いた Z-score により標 準化した.

本実験での CNN の学習では、平滑化、ノイズ付加及び Time Cropping を Data Augumentation として採用し、元の 学習データを 45 倍に水増しした [3].また、各層のパラメー タの初期値は、各層の入力の大きさ N_l (CNN の場合 $N_l =$ Width * Height * Depth) により、 $\mu = 0$ 、 $\sigma = \sqrt{2/N_l}$ の正 規分布に従う乱数で初期化し、学習率 $\alpha = 5.0 \times 10^{-6}$ の Adam を用いて学習させた、一方で、SVM ではグリッドサーチによ るパラメータ探索により、最適なハイパーパラメータを導出 し、各交差検証で最適パラメータによる学習後の SVM をテス トデータによる評価に用いた。

4.4 実験結果

各入力各手法における識別精度比較実験の結果を図2に示 す.全てのCNNにおいて快・平常・不快の3状態の推定の チャンスレート 33.33%を上回り,EEGの時間周波数成分か ら快不快感情が学習可能であることが示された.

一方で,SVM の平均識別精度 49.73%±3.38%に対してど の CNN も 6%近く識別精度で劣り,EEG の周波数帯域成分 を用いるアプローチを CNN による識別器の設計に活用するこ とは,既存手法に比べ有効であるとは言えない結果となった. また,各 CNN 間の識別性能に有意差はなく畳み込み順による 識別性能への影響はなかった (*p* = 0.945, (> 0.05)).

制約を設けない入力特徴である ALL × ALL は制約を設け た入力特徴よりも有意に優れた識別性能を示した (*p* = 0.002, (< 0.05)). 生理心理学分野の知見の流用し,識別に悪影響を 与え得る成分を除去していくにつれて識別性能を落とす結果と なった.以上より,本実験での特徴削減のように生理心理学分 野の知見を単純に適用するだけでは,EEG が元々保持する識 別に有用な情報の損失を招きうることが示された.

図 3: CNN による各特徴ごと の識別結果の混同行列

図 4: SVM による特徴ごとの 識別結果の混同行列

4.4.1 入力特徴による各感情の識別への影響

図3に設計した特徴ごとの混同行列を示す.先ず,全ての入力 特徴で平常と快の誤認識が比較的多いことが確認される.また, $\theta \alpha \times FRONTAL \ge \theta \alpha \times EFFECT$ では共に, $ALL \times ALL$ に比べて不快と平常を互いに誤認識する事例が増加していた.

図4にSVMによる識別器の混同行列を示す.平均識別精度 のみに着目すると各CNNはSVMの識別性能に劣るが,CNN に比べてSVMは入力特徴を多く削減することで,快の識別 率を低下させることが示された.特に, $\theta\alpha \times ALL$ に対して $\theta\alpha \times FRONTAL と \theta\alpha \times EFFECT$ をそれぞれ比較すると, 入力特徴の電極数の削減の影響を強く受けることがわかる.実 利用を想定される簡易脳波計は少数の電極で構成されることが 多く,大きな問題となることが推測される.

4.4.2 CNN の重要入力特徴成分の可視化分析

CNN の他の機械学習手法と異なる大きな特徴は、多層構造 に起因する中間表現を有することである。特に、画像分野の CNN では設計の評価などを目的に、Guided Backpropagation や Guided Grad-CAM などの中間表現を利用した重要入力成 分の可視化手法が検討されている [8].提案手法では輝度画像 と同等の次元設計の入力特徴と CNN をそれぞれ採用しており、 画像分野での CNN 設計と非常に類似している。本研究では上 記の画像分野との類似性を利用し、更に踏み込んだ EEG によ る感情解析として、学習した CNN に Guided Grad-CAM を 適用した重要入力成分の可視化による解析を行った。可視化 には CNN で最高識別性能 47.65%を示した ALL × ALL と F-S-T-Net の組合せで、最高識別精度 50.67%が得られた交差 検証の分割テストデータを用いた。各感情での識別結果が正解 であったデータの重要入力成分の平均を可視化した。

各感情の重要入力成分の可視化結果をそれぞれ図 5, 6, 7 に示す.空間軸・周波数軸に関して,快では FC5 と T7 と O2 と AF4 の α 波, F7 と AF4 の β 波及び F4 と AF4 の γ 波が, 平常では FC6 と AF4 の θ 波, F3 と O2 と F7 と T7 の α 波 及び AF3 と AF4 の β 波が,不快では P7 と AF4 の θ 波, F3 と F7 と T7 と O2 の α 波, O2 と AF4 の β 波及び F4 と AF4 の γ 波がそれぞれ重要入力成分として学習されていた. CNN は生理心理学的な知見と同様に前頭葉の成分を特徴として学習 することが示された.また,各感情間で空間軸・周波数軸の重 要入力特徴成分が類似し,CNN では一部の電極位置・周波数 帯域成分から学習することが示された.

一方で、時間軸に着目すると、快では trial 開始後 1.5 秒か ら 2.25 秒の間に、平常では trial 開始後 0.5 秒から 1.75 秒の 間に、そして不快の場合には trial 開始後 0.5 秒から 1.5 秒の 間に重要入力成分が分布していた.以上より、CNN では各感 情で異なる時間区間を重要入力成分として学習することが示さ れた.また、同一感情の各成分ごとでも学習される時間区間が 異なることも示された.

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

も、必ずしも有効に働く訳ではないことを示された.しかし、 提案手法に Guided Grad-CAM を適用することで、対象感情 が EEG の周波数軸、空間軸、時間軸のどの成分から特徴抽出 しているのか分析が可能であることを示せた.更に、可視化分 析では DNN は EEG の時間軸での推移傾向の違いを学習した ことが確認され、提案手法は単なる識別器に留まらず EEG と 感情の新しい解析手法になり得ることが示唆された.

公開データセットを用いて提案手法と他の既存手法とを比 較すること,他感情を利用した場合での提案手法の有効性検 証,そして提案手法への Guided Grad-CAM の適用による分 析手法の有効性を他の解析手法と比較評価することが今後の課 題である.

参考文献

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
- [2] Yongbin Gao, Hyo Jong Lee, and Raja Majid Mehmood. Deep learninig of eeg signals for emotion recognition. In Multimedia & Expo Workshops (ICMEW), 2015 IEEE International Conference on, pages 1–5. IEEE, 2015.
- [3] Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and Tonio Ball. Deep learning with convolutional neural networks for eeg decoding and visualization. *Human brain mapping*, 38(11):5391– 5420, 2017.
- [4] Giovanni Vecchiato, Jlenia Toppi, Laura Astolfi, Fabrizio De Vico Fallani, Febo Cincotti, Donatella Mattia, Francesco Bez, and Fabio Babiloni. Spectral eeg frontal asymmetries correlate with the experienced pleasantness of tv commercial advertisements. *Medical & biological engineering & computing*, 49(5):579–583, 2011.
- [5] Michela Sarlo, Giulia Buodo, Silvia Poli, and Daniela Palomba. Changes in eeg alpha power to different disgust elicitors: the specificity of mutilations. *Neuroscience letters*, 382(3):291–296, 2005.
- [6] 野村 太輝ら. 生理心理的制約に基づく脳波による主観的状態の認識. HCG シンポジウム, 2017.
- [7] Wei-Long Zheng and Bao-Liang Lu. Investigating critical frequency bands and channels for eeg-based emotion recognition with deep neural networks. *IEEE Transactions on Autonomous Mental Development*, 7(3):162– 175, 2015.
- [8] RS Ramprasaath, D Abhishek, V Ramakrishna, C Michael, P Devi, and B Dhruv. Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based localization. CVPR 2016, 2016.

4.5 考察

学習した CNN の重要入力成分の可視化結果より,快・平 常・不快の CNN では特に空間軸と周波数帯域軸の重要入力成 分が類似していることが分かった.入力特徴の電極位置・周波 数帯域成分を削減することで,これらの識別に有用であった重 要特徴が失われ,性能が低下したのではないかと考えられる. 特に,快では β 波・ γ 波の4つの成分が上位8位の重要入力 成分として識別に寄与しており,これが周波数帯域の削減で快 の認識性能を著しく低下させた要因だと考えられる.

各感情に着目した際に,SVMの快の識別性能が入力特徴 を削減するに伴い著しく低下したのに対して,CNNでは性能 の低下がSVMほど如実ではなかった.これはCNNでは時間 軸方向でも特徴抽出するのに対し,SVMでは時間軸での平均 値を入力特徴としたため,各感情間で空間軸・周波数軸での重 要成分が類似していた影響を強く受けたためだと考えらえる. また,提案手法に対してGuided Grad-CAMによる重要入力 成分の可視化を適用することは,今までのEEG分野に存在し なかったような周波数軸,空間軸,時間軸に関して同時に分析 が可能となりうると考えられる.

5. 結論

本研究では、DNN による EEG を用いた感情の認識手法を 提案した.生理心理学における EEG と感情の関係性の解析手 法に基づき,各電極位置・周波数帯域成分間で独立して特徴抽 出する DNN を CNN を用いて設計し,有効性を検証した.更 に,Guided Grad-CAM を提案手法に適用し EEG と快不快 感情の関連を解析した.

評価実験により, CNN は EEG の周波数帯域成分から快不 快感情を学習可能であることが示されたが, 既存手法に対す る提案手法の有効性は示されなかった.また,入力特徴の削減 によってノイズとなり得る成分を単純に除外する制約について