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This paper focuses on lack of explainability about the actions made by Deep reinforcement learning (DRL). DRL
shows its superiority on tasks with multi-dimensional visual-input such as playing Atari games and navigation of
robot. Also, DRL has been expected as an useful approach to realize a self-driving car. Though a lot of inputs
would be available within urban environment, we could not specify the essential inputs to decide the appropriate
action. The results derived from DRL are the tacit knowledge that is difficult to transfer to another system by
means of writing it down as a symbolic way. Thus, human designer of self-driving operation may be reluctant to
accept and utilize these results.

For the above reason, as a first stage to reach a symbolic representation, we propose a filtering method to specify
the necessary inputs for the right actions, and show the effectiveness of it via some experiments.
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Algorithm 1 DDPG

1: Actor Critic μ(s|θμ) Q(s, a|θQ)
θμ θQ

2: μ′ Q′

θμ
′ ← θμ θQ

′ ← θQ

3: R

4: for learn = 1 to F do

5: N 0

6: s1

7: for t = 1 to T do

8: at = μ(st|θμ)+Nt

9: Nt ← Nt−w1 ·Nt+w2 ·random
10: at rt st+1

11: (st,at, rt, st+1) R

12: R 128

13: yi = ri + γQ′(si+1, μ
′(si+1|θμ′

)|θQ′
)
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17: μ′ Q′

18: θμ
′ ← τθμ + (1− τ)θμ

′

19: θQ
′ ← τθQ + (1− τ)θQ

′

20: end for

21: end for
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1: [Loiacono 13]

trackPos (-∞, +∞) -

angle [-π, π] rad

speedX (-∞, +∞) km/h

speedY (-∞, +∞) km/h

speedZ (-∞, +∞) km/h

2: [Loiacono 13]

steering [-1,1] - -1 1

2 1 1

1 Algorithm1

t 1 at

2 rt

-20

� �
rt = −20

if |trackPos| < 0.2:

pos penalty = 0

else: pos penalty = −10|trackPos|2
if |angle| < 0.01:
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Algorithm 2

1: (n,m) = ( , ) (n > m)

2: i = 0

I.L

3: while i < L do

4: Algorithm1 n

5:

6: (accel, ave accel, SD accel) =

( , accel , accel )

7: G:

8: over accel = 0

9: for t = 1 to race finish do

10: accel

11: if accel > 0.3G then

12: over accel = over accel + accel/0.3G

13: end if

14: if t = race finish then

15: dist

16: end if

17: end for

18: if (ave accel+SD accel+ over accel) < 0.3G then

19: stability = good

20: end if

21: if dist = 400 ∧ stability = good then

22:

23: i ← i+ 1

24: agenti
25: end if

26: end while

II.

27: X = {xj |j n }
28: R = {rj |j n }
29: X ← 0

30: for k = 1 to L do

31: agentk n

32: R

33: X :

34: xj ← xj(n− rj + 1)

35: end for

III.

36: M = X m

37: for l = 1 to L do

38: Mall:agentl m

39: M5m:agentl 5m

m

40: if M = Mall ∧M = M5m then

41: agentl
42: end if

43: end for

IV. M

44: if dist = 400 ∧ stability = good then

45:

46: else

47:

48: 2

49: end if
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