Quasi-Recurrent Neural Networks に基づく 対話モデルを用いた対話破綻検出

Dialog Breakdown Detection using Dialog Model based on Quasi-Recurrent Neural Networks

田中 涼太 李 晃伸 Ryota Tanaka Akinobu Lee

名古屋工業大学 大学院情報工学専攻

Department of Computer Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology

In recent years, studies on chat-oriented dialog systems have been actively conducted due to the spread of dialog agents. On the other hand, many chat-oriented dialog systems have frequent dialog breakdown in which dialog is not smoothly performed. To tackle this problem, we propose a method to perform fast learning and robust dialog breakdown detection using Dialog Model based on Quasi-Recurrent Neural Networks (QRNN). To clarify the effectiveness, we conducted comparison experiment with other Recurrent Neural Networks (RNN) models, and show that QRNN has a faster learning and more accurate dialog breakdown detection than RNN.

1. はじめに

近年,対話エージェントの普及により,日常的な雑談を目的 とする雑談対話システムの研究が盛んに行われている.一方, 多くの雑談対話システムは対話が円滑に行われない現象(対話 破綻)が頻発しているのが現状である.対話を行なっていても システムの発話が対話破綻を起こすと,会話が円滑に進まずに 会話が途切れる,ユーザの対話継続意欲を阻害する,システム 自体に飽きる等の可能性が考えられる.この問題を解決するた めには,対話破綻の回避や対話破綻を検出してリカバリする技 術が必要である.そこで,これらの技術を培うために人間とシ ステムが対話を行なったログに対して対話が破綻しているかを 検出する対話破綻検出チャレンジ[1]が開催されている.本研 究はこちらのタスクに沿って手法の提案を行う.

対話破綻検出の問題は、各システム発話に「破綻している」、 「破綻とは言い切れないが、違和感を感じる」、「破綻ではな い」の3種類のラベルが付与されており、これらのラベルを 予測する問題と捉えることができる.これまでの対話破綻検出 チャレンジにおいて、小林ら [2] により Neural Conversational Model (NCM)[3] を一部拡張し、対話破綻検出を行うモデル が提案された.さらに、久保ら [4] によりこの枠組みの欠点で ある別途学習データの収集が必要である点を改良し、高い性能 を示した.

NCM の学習には一般的に Recurrent Neural Networks (RNN)が使用されるが、学習に多大な時間を要するため、高 精度なモデルの構築が困難だといえる.また、久保らのモデ ルは NCM を用いて対話破綻検出を行なっているため、NCM の性能が対話破綻検出の精度に影響する.以上のことから、高 精度な対話破綻検出を行うには、学習速度の高速化、および NCM の性能向上は必要不可欠なタスクだと考える.

本研究では Quasi-Recurrent Neural Networks (QRNN) を NCM の学習に用いる.近年の研究で, Bradbury ら [5] によ り RNN の 機構を Convolutional Neural Networks (CNN) によって擬似的に表現した QRNN が提案された. Bradbury らの実験で, Encoder-Decoder モデルを用いた機械翻訳タス クにおける QRNN の有効性が示唆されており,類似タスクで ある本タスクにおいても同様の結果が期待される. 本稿では、2章で対話モデルを用いた対話破綻検出について 述べ、3章で提案モデルについて述べる、4章で評価実験につ いて述べ、5章で本研究のまとめを述べる.

2. 対話モデルを用いた対話破綻検出

対話破綻検出を行うことで、システム自身が発話する前に 対話破綻に繋がる発話であることを認識したり、システムの発 話後に自身の発話が対話破綻を起こしていることを認識するこ とが可能である.一方で、対話破綻を事前に回避したり、リカ バリを行うには、対話破綻検出を行うだけでは不十分であり、 対話を行いつつ生成された発話に対して対話破綻検出を行うこ とで実現することができる.つまり、対話モデルと対話破綻検 出を統合した枠組みでを考える必要がある.

Vinyals ら [3] により、RNN を使って発話文から応答文を 生成する対話モデルとして NCM が提案された. NCM は Encoder と Decoder の 2 つのネットワークで構成されてい る. Encoder により発話の単語列を順々に読み込み、発話内 容を表す潜在表現に圧縮し、Decoder は圧縮された表現に基 づいて応答文を一単語ずつ出力する. 小林ら [2] は NCM の 拡張モデルとして Encoder の最終時刻における隠れ層 \tilde{h}_T を Deocoder に毎時刻注入する操作を拡張したモデルを提案した. また、このモデルに発話文と応答文のペアを入力し、Encoder と Decoder の最終時刻における隠れ層 v_i , v_o を素性に分類器 を作成して対話破綻検出を行った.

一方で、NCM を学習する際に、対話破綻検出チャレンジで 配布されている学習データには対話が破綻しているデータも 含まれるため、対話が破綻した対話とそうでない対話とが区 別されないまま学習が進んでしまい正常な学習が困難である. そこで、久保ら [4] は小林らのモデルに対して、対話データに 含まれる O、 Δ 、X のアノテーション分布に基づいて応答文の 末尾に対話破綻ラベルを確率的に付与する手法で学習データの 生成を行なった.これにより、対話破綻ラベル毎の学習が可能 になり、昨年度の対話破綻検出チャレンジで最も高い F 値を 示した.

連絡先:田中 涼太,名古屋工業大学 大学院情報工学専攻, rtanaka@slp.nitech.ac.jp

図 1: 提案モデル(久保ら [4] のモデルに対して対話モデルの学習部を QRNN に置換したモデル)

3. 提案モデル

3.1 提案モデルの概要

我々の提案するモデルは久保ら [4] のモデルをベースに対話 モデルの学習を QRNN で行うモデルである.対話破綻検出の 流れは以下になる.

- 1. O, △, X のアノテーション分布に基づいて応答文の末尾 に対話破綻ラベルを付与する
- 2. 1. で作成した学習データを元に対話モデルを QRNN で 学習する
- 発話文と応答文のペアを対話モデルに入力し,発話文,応 答文埋め込みベクトル v_i, v_o (Encoder と Decoder の最 終時刻における隠れ層)を獲得する
- 4. v_i, v_o を素性に Support Vector Machine (SVM) で識 別を行う

以上の流れを図1に示す.本節では,まず従来手法との差分で ある2.について焦点を置き,QRNNについての導入,および QRNNに基づく対話モデルについて述べた後,3.について説 明する.

3.2 Quasi-Recurrent Neural Networks

QRNN は 畳み込み層と再帰構造を持つプーリング層の 2 層 により構成されるニューラルネットである [5]. 入力を n 次元 系,列長 T のベクトル $X \in \mathbb{R}^{T \times n}$, カーネル幅を k, カーネル 数を m, ユニットへの結合重みを $\{W_z, W_f, W_o\} \in \mathbb{R}^{k \times n \times m}$ としたとき, 畳み込み層では (1)~(3) 式を用いて入力から局 所特徴量 $\{Z, F, O\} \in \mathbb{R}^{T \times m}$ を抽出する. ここで用いる畳み 込みは未来の時刻情報を含まずに畳み込みを行うため,時系列 方向に k - 1 のパディングを入れる Masked Convolution[6] を用いる.

$$Z = \tanh(W_z * X) \tag{1}$$

$$F = \sigma(W_f * X) \tag{2}$$

$$O = \sigma(W_o * X) \tag{3}$$

プーリング層では (4), (5) 式に基づいて過去の履歴を考慮し つつ畳み込みで得られた局所特徴量の集約 (fo-poolng) を行 う.これにより,入力の各局所特徴量を独立に解釈するのでは なく,文脈を考慮した大局的な解釈を行うことができる.

$$c_t = f_t \odot c_{t-1} + (1 - f_t) \odot z_t \tag{4}$$

$$h_t = o_t \odot c_t \tag{5}$$

3.3 QRNN に基づく対話モデル

(1)~(3) 式を Encoder の最終時刻における隠れ層 \tilde{h}_T を用 いて, Decoder では以下の式に変更したものを用いる.

$$Z = \tanh(W_z * X + V_z \tilde{h}_T) \tag{6}$$

$$F = \sigma(W_f * X + V_f \tilde{h}_T) \tag{7}$$

$$O = \sigma(W_o * X + V_o \tilde{h}_T) \tag{8}$$

3.4 発話文と応答文の特徴量抽出

QRNN で学習を行った対話モデルを発話文と応答文の特徴 量を抽出する文エンコードモデルとして使用する.具体的に は、対話モデルの Encoder と Decoder の最終時刻における隠 れ層を特徴量として抽出する.対話モデルを QRNN で学習す ることで、最終時刻における隠れ層は、発話の大局情報(単語 やフレーズといった局所情報を時間軸に沿って統合した情報) を表す埋め込みベクトルとしてみなすことができる.

従って、大局的に前の発話文との矛盾や情報の過不足などの 齟齬が生じたとき、これらを検出することが可能である.

4. 評価実験

4.1 タスク設定

提案モデルの有効性を検証するために、学習時間の計測,お よび対話破綻検出を行う.学習時間の計測を行うにあたり、各 モデルの層数 \in {1,2,4} で変更を行い、100 epoch 学習する のに要した時間の平均を1 epoch あたりの学習時間として比 較を行う.また、対破綻検出の評価には、対話破綻検出チャレ ンジで用いられているラベルー致率系統と分布一致系統を使用 する.具体的には、以下の評価尺度から構成される.

- Accuracy: 全ラベルの一致率. 検出結果全体の正解率を 測ることができる尺度.
- F-measure(X): 破綻ラベル X の検出に関する F 値. 破 綻検出の正確性(Precision),網羅性(Recall)の調和平 均 (F-measure) を測ることができる尺度.
- F-measure(\triangle +X): ラベル \triangle と X を同一の破綻ラベル とみなした場合の F 値.
- Mean Squared Error (O, △, X): 分布間の平均二乗誤差.
- JS Divergence (O, \triangle, X) : Jensen-Shannon divergence による分布間の距離.

4.2 比較モデル

評価実験では以下の3種類のモデルを比較する.

GRU (従来手法) 対話モデルの学習を GRU で行う

LSTM (従来手法) 対話モデルの学習を LSTM で行う

QRNN (提案手法) 対話モデルの学習を QRNN で行う

以上の全てのモデルを Chainer*1 を用いて実装した.実験に 用いた計算機の GPU には, GeForce GTX Titan X, GPU 演算のためのツールには CUDA-8.0*2 を用いた.

4.3 データセット

本実験では対話破綻検出チャレンジ1,および対話破綻検出 チャレンジ2で用意されている配布データを使用した.配布 データに含まれる対話システムは DCM, DIT, IRS から構成 される.様々な形態の対話システムのデータを扱うことで,汎 用的な対話破綻検出器の構築が期待できる.また、対話データ には以下のラベルのアノテートが行われている.

- O 破綻ではない:問題なく対話が継続できる
- △ 破綻とは言い切れないが、違和感を感じる: スムー ズな対話継続が困難
- X 破綻している:対話を継続することが困難

表1に配布データの詳細を示す.ただし、1対話は21個の発 話で構成されている.

システム	データ名	対話数	0	\triangle	X (%)
DCM	rest1046	1046	58.3	25.3	16.4
	DBDC dev/test	20/80	37.1	32.2	30.6
	DCM dev/test	50/50	39.8	30.2	29.9
DIT	DIT dev/test	50/50	33.0	27.4	39.5
IRS	IRS dev/test	50/50	37.4	24.3	38.3

表 1: 対話破綻検出チャレンジの配布データ

対話データには最大 30 人の評価者が破綻ラベル (O, △, X) の付与を行っているため,最も多く付与されているラベルを正 解ラベルとした. また, ラベルの数が同数の場合は O, △, X の順の優先度で正解ラベルを決定した. 前処理として, 全て

*1 http://chainer.org

の文に対して Mecab*3 を用いて形態素解析を行った. Mecab の辞書には多くの固有名詞に対応している ipadic-negologd*4 を使用した. 語彙は単語出現頻度上位 4000 語に制限し, 語彙 に含まれない単語を未知語 <unk> に置換した.

モデル選択を行うために DCM dev, DIT dev, IRS dev の うち 60 対話を開発データとして利用した.対話モデルの学習 には、rest1046, DBDC dev/test と DCM dev, DIT dev, IRS dev のうち開発データに含まれないデータを使用した.対 話破綻検出器の学習には,対話モデルの学習で用いた学習デー タのうち, ラベルの偏りが大きいデータ (rest1046) を除くデー タを使用した. 評価データは DCM test, DIT test, IRS test を使用した.

4.4 学習条件

入力層を 256 次元,中間層には 256 次元の RNN (LSTM, GRU), QRNN ユニットをどちらか一方を2層重ねた. QRNN の畳み込みにおける入力チャネル数、出力チャネル数、カーネ ル幅,ストライド幅を表2に示す.

layer	in-ch	out-ch	kernel	stride
1st (Encoder)	256	256×3	(6,1)	1
2nd (Encoder)	256	256×3	(2,1)	1
1st (Decoder)	256	256×3	(1,1)	1
2nd (Decoder)	256	256×3	(1,1)	1

表 9. OPNN の墨み込みパラメータ

全ての結合重みは,平均0,分散 <u>1</u> のガウス分布に基づ いて初期化を行った. 学習はミニバッチ学習で行い、ミニバッ チサイズを 32 とした. ミニバッチごとの勾配爆発を防ぐため に最大ノルムを5として勾配クリッピングを行った.目的関 数には予測単語ごとの交差エントロピー誤差を使用し, Adam (alpha=0.01, beta1=0.9, beta2=0.999, eps=1×10⁻⁸) で最 適化を行なった. また, 200 epoch の学習を行う過程におい て 20 epoch 終了するたびに rbf カーネルを用いた SVM で 学習を行い、開発データを用いて F-measure の算出した.こ こで最も高い性能を示したモデルを採用した.過学習を防ぐ目 的に、中間層と出力層に dropout, 目的関数に weight decay を導入した. dropout $\in \{0.3, 0.4, 0.5\}$, weight decay $\in \{2 \times$ $10^{-3}, 2 \times 10^{-4}, 2 \times 10^{-5}$ }の値でパラメータの変更を行い, 最も F-measure の高いパラメータを採用した結果, GRU の dropout $\natural 10.3$, weight decay $\natural 12 \times 10^{-4}$, LSTM \mathcal{O} dropout $l \ddagger 0.5$, weight decay $l \ddagger 2 \times 10^{-5}$, QRNN \mathcal{O} dropout $l \ddagger 0.3$, weight decay は 2×10^{-4} となった、学習時間の計測の際は、 dropout による学習時間の影響が考えられるため、dropout の 適用は行わないものとする.

4.5 実験結果

層数を変動させた時の各モデルの学習速度の計測結果を表3 に示す. 結果は QRNN が最も速く, 最も遅い LSTM と比較 すると、約3.2倍の速度で学習が行えることが確認できる.こ れは、QRNN が入力に対して並列処理を行えることによる影 響だと考えられる.

各モデルの対話破綻検出の結果を表4に示す. DCM の Accuracy と F-measure(△+X) を除いた指標において QRNN が RNN よりも高精度に対話破綻を検出することが確認でき

*3 http://mecab.sourceforge.net

^{*2} https://developer.nvidia.com/cuda-toolkit

^{*4} https://github.com/neologd/mecab-ipadic-neologd

Layer Model	1	2	4
GRU	59.11	107.7	210.6
LSTM	71.80	139.2	254.4
QRNN	22.51	43.93	85.26

表 3: 学習速度の計測結果 [epoch/s]

System	Model	Accuracy	F-measure	F-measure	MSE	JSD
			(X)	$(\triangle + X)$	(O, \triangle, X)	(O, \triangle, X)
DCM	GRU	0.4709	0.4872	0.6175	0.0657	0.1309
	LSTM	0.5018	0.4510	0.6414	0.0651	0.1270
	QRNN	0.4909	0.5116	0.5880	0.0635	0.1256
DIT	GRU	0.5873	0.6853	0.7995	0.0463	0.0919
	LSTM	0.6073	0.7131	0.8973	0.0445	0.0874
	QRNN	0.6091	0.7137	0.9175	0.0367	0.0762
IRS	GRU	0.4873	0.5424	0.6944	0.0773	0.1485
	LSTM	0.5091	0.5817	0.7207	0.0753	0.1439
	QRNN	0.5291	0.6314	0.7970	0.0687	0.1350

表 4: 対話破綻検出の結果

る. RNN では誤った検出を行なっていたが、QRNN で正しく検出が行えた対話例を以下に示す.

- ユーザ:今日も暑いですね
- **システム**: 大通会場と JR 東日本なら, どちらに関心があり ますか?
- ユーザ:何のことですか?
- **システム**:シンガポールと奈良なら,どちらが楽しいでしょ うか?

「何のことですか?」という発話に対して、「シンガポール と奈良なら、どちらが楽しいでしょうか?」と応答しているよ うに、本来は質問に答える対話行為や話題を追従する応答をす るべきであるが疑問文で返していたり、全く無関係な話題に転 換している.このような対話に対して QRNN は対話行為や話 題といった対話の特徴を捉えることができ、正しく検出できた のだと考えられる.

5. おわりに

本研究では、高速かつ高精度な対話破綻検出器の構築を行う ために、対話モデルの学習に QRNN を適用し、対話モデルを 用いた対話破綻検出を提案した.ベースラインモデルとして、 対話モデルの学習に RNN (LSTM, GRU)を用いた対話破綻 検出の手法を比較対象とした評価実験を行なった.

評価実験では対話モデルの学習に QRNN を適用すること で、入力系列に対する並列処理が可能になり、学習速度が約 3.2 倍の高速化を実現した.また、文脈に沿った大局的な学習 が可能になったことで、不自然な対話行為や無関係な話題の転 換といった検出が可能になり、検出精度の改善を示した.

今後の課題として,対話破綻検出器の素性の最適化,対話 モデルに用いる学習データに大規模なデータセットを用いるこ とで、より高精度な対話破綻検出が可能になると考えられる. また、本研究で作成した枠組みを用いることで、対話破綻検出 の結果を発話生成に生かす手法のアプローチになると考えられる.

参考文献

- 東中竜一郎,船越孝太郎,稲葉通将,荒瀬由紀,角森唯子, "対話破綻検出チャレンジ2,"第78回言語・音声理解と 対話処理研究会(第7回対話システムシンポジウム),人 工知能学会研究会資料 SIG-SLUD-B5025-19, pp.64-69, 2016.
- [2] 小林颯介,海野裕也,福田昌昭,"再帰型ニューラルネットワークを用いた対話破綻検出と言語モデルのマルチタスク学習,"第75回言語・音声理解と対話処理研究会(第6回対話システムシンポジウム),人工知能学会研究会資料 SIG-SLUD-075-09, pp.41-46, 2015.
- [3] Oriol Vinyals, Quoc Le, "A Neural Conversational Model," arXiv:1506.05869, 2015.
- [4] 久保隆宏,中山光樹, "Neural Conversational Model を 用いた対話と破綻の同時 学習,"第 78 回言語・音声理解と 対話処理研究会(第 7 回対話システムシンポジ ウム),人 工知能学会研究会資料 SIG-SLUD-B5025-19, pp.94-97, 2016.
- [5] James Bradbury, Stephen Merity, Caiming Xiong, Richard Socher, "Quasi-Recurrent Neural Networks," arXiv:1611.01576, 2016.
- [6] Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu. "Pixel recurrent neural networks," arXiv:1601.06759, 2016.