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Following great successes of machine learning in various benchmarks, its practical use is attracting attention.
The machine learning system has to be trained using a wide variety of data samples and to be tested under various
conditions, but collecting numerous data samples is very costly. Here, a demand for data augmentation arises. In
this paper, we tackle the augmentation of real images by translating their modality to another modality such as
daytime vs. night-time. This data augmentation enables us to train and test the machine learning system in various
modality. We first demonstrate that existing approaches, pix2pix and cycle-GAN have some difficulties of applying
data augmentation; pix2pix requires paired samples in both modalities or cannot overcome the difference in the
modalities, and cycle-GAN sometimes fails in keeping consistency in both modalities. We propose modifications of
these methods, which improve the consistency in image modality translation.

1.

[Shrivastava 17]

pix2pix[Isola 17]

:

matsubara@phoenix.kobe-u.ac.jp

Cycle-GAN[Zhu 17]

KAIST Mul-

tispectral Pedestrian Detection Benchmark[Hwang 15]

pix2pix Cycle-GAN
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3. Cycle-GAN

Cycle-GAN[Zhu 17]
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x ŷ
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