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Recently, music studies based on deep learning that require a large amount of input have been garnering attention
increasing. Along with that, the task of generating accurate scores from audio data is also important. Although
NMF is often used for music factorization into sound basis and activation, there is room for improvement and
many methods have currently being proposed. In this paper, we propose method of polyphonic music factorization
using RBM. RBM is stochastic model and outputs binary-valued latent features, which is suitable for music score
notation. Furthermore, we also propose sparse-RBM in order to settle cross cancel problem. In conclusion, our
proposed method showed better accuracy than NMF.
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filename rank time(s) NMF(%) sparse-RBM(%)

RM-C27 9 33 32.4 59.3

RM-C31 18 24 15.7 13.1

RM-C30 20 32 13.1 10.8

RM-C23A 21 30 18.7 17.4

RM-C23B 25 48 14.7 15.3

RM-C26 27 28 27.2 23.8

RM-C35A 32 31 13.3 11.4

RM-C23C 35 55 26.6 24.1

RM-C29 41 32 12.3 12.1

average 25.3 34.8 19.3 20.8
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