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The problem of visual change detection becomes a challenging one when query and reference images involve
different domains (e.g., time of the day, weather, and season) due to variations in object appearance and a limited
amount of training examples. In this study, we address the above issue by training a GAN-based image translator
that maps a reference image to a virtual image that cannot be discriminated from query domain images, and
experimentally verify efficacy of the approach.

1. Introduction
This paper addresses the problem of change detection from a

novel perspective of domain adaptation. Change detection aims

to identify interesting changes between a given query image and a

reference image of the same scene taken at different times. This is

a fundamental problem in computer vision and robotics with many

important applications including visual navigation, novelty detec-

tion, surface inspection, and city model maintenance. This prob-

lem becomes a challenging one when query and reference images

involve different domains (e.g., time of the day, weather, season).

This is due to variations in object appearance in different domains,

which makes it harder to discriminate changes of interest from nui-

sances. One of most basic schemes to handle this difficulty is to

train a domain-specific change predictor for each possible domain

pair. However, this requires a vehicle to collect and learn from

a number of training images from both domains, which severely

limits its applicability to new domains where large amounts of an-

notated training data are typically unavailable.

In this study, we address the above issue by leveraging a gener-

ative adversarial network (GAN) (Fig. 1). Our approach is moti-

vated by the recent success of the image-to-image translation tech-

nique in the field of computer vision and graphics. The image-

to-image translation technique aims to learn the mapping between

an input image in one domain to a virtual image that cannot be

discriminated from target domain images. The key concept we

employ is to use a limited amount of training data to train a GAN-

based image translator for reference-to-query domain translation.

This enables us to treat the cross-domain change detection task

as an in-domain image comparison and allows us to leverage the

large body of literature on in-domain generic change detectors. In

addition, we also consider the use of visual place recognition as

a method for mining more appropriate reference images over the

space of virtual images. Experiments validate efficacy of the pro-

posed approach.

2. Related Work
Change detection has been widely studied in various task sce-

narios. These scenarios are categorized into 2D-to-2D match-

ing [1], 3D-to-3D matching [2], 2D-to-3D matching [3]. [1] con-

siders a 2D-to-2D matching on overhead imagery using an im-
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1: Change detection using image-to-image translation by gener-

ative adversarial network (GAN). Left: a reference image. Middle:

virtual reference image. Right: query image.

age registration and scale invariant feature transform (SIFT). [2]

addressed a 3D-to-3D matching on point cloud data for novelty

detection by patrol robots. [3] considered a 2D-to-3D matching

between monocular image and cadastral 3D city models. Our ap-

proach belongs to 2D-2D matching, and our setting is far more

complicated than the case of overhead imagery [1] as our vehicu-

lar applications require the capability to deal with more general 6

degrees-of-freedom freely-moving camera motion in a 3D space.

Up until now, the most fundamental scheme reported for ad-

dressing this challenge is to directly compare each view image

against the corresponding reference image. In [4], a scene align-

ment method for image differencing is proposed based on ground

surface reconstruction, texture projection, image rendering, and

registration refinement. In [5], a deep deconvolutional network

for pixelwise change detection was trained and used for compar-

ing query and reference image patches. However, a major concern

of these direct methods is that they may fail to capture appearance

variations caused by a domain shift.

Our approach is inspired by the domain adaptation and transfer

learning approaches, ranging from parameter adaptation, feature

transformation, and metric learning, to deep learning techniques,

which have been applied to a wide variety of visual recognition

tasks. In recent years, the application of GANs to domain adapta-

tion tasks has attracted much attention. In our application domain,
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2: Experimental environments and viewpoints. (Red/blue cir-

cles: the viewpoints of the 100 pairs of summer/winter images in

the test set.)

image-to-image translation has been one of mostly studied issues

over the last two years [6]. Image-to-image translation aims to map

a raw image in a source domain to a virtual image in such a way

that the virtual image cannot be discriminated from raw images in

the target domain. Typical training algorithms for the translation

GAN take a set of paired source-target images as input. We ad-

dress this basic setting and use a typical architecture in [6] for the

current experimental system.

3. Problem
Although our approach is sufficiently general and applicable to

various types of environments (indoor and outdoor for instance)

and sensor modalities, in our experiments, we focus on the NCLT

dataset [7]. The NCLT dataset is a large scale, long-term autonomy

dataset for robotics research collected at the University of Michi-

gan’s North Campus by a Segway vehicle robotic platform. The

Segway was outfitted with: a Ladybug3 omnidirectional camera, a

Velodyne HDL-32E 3D lidar, two Hokuyo planar lidars, an IMU,

a single axis fiber optic gyro (FOG), a consumer grade global posi-

tioning system (GPS), and a real-time kinematic (RTK) GPS. The

data we used in the research includes image and navigation data

from the NCLT dataset. The image data is from the front facing

camera (camera#5) of the Ladybug3 omnidirectional camera. Fig.

2 shows a bird’s eye view of the experimental environment and the

vehicle’s camera viewpoints.

During the vehicle’s trips through the outdoor environments

(Fig. 2), it encounters various types of changes, which origi-

nate from the movement of individuals, parking of cars, build-

ing construction, and opening or closing of doors. There

are also nuisances that originate from illumination alterations,

viewpoint-dependent changes of objects’ appearances and occlu-

sions, weather variations, falling leaves and snow. A critical and

significant challenge in a substantial majority of change detection

tasks is to discriminate changes of interest from nuisances. This

renders our change detection task significantly more demanding.

Precision-recall is a standard performance index for image

based change detection algorithms [8]. As a performance index,

we use mean average precision (mAP), derived from the field of

visual object detection [9]. A change detection algorithm outputs

a prediction of the likelihood of change (LOC) for each cell on

a w × h image grid of LOC values, as we will describe in 4.3.

For the evaluation, the LOC value of each cell in the image grid

is thresholded into a state of change or no-change, and then the

binary change mask is compared against a ground-truth change

mask. Different threshold values provide different tradeoff points

between precision and recall. The mAP can be viewed as a sum-

mary of these different tradeoff points and approximates the value

of receiver operating characteristic (ROC). Following the litera-

ture [9], we approximate the average precision (AP) based on the

average of “interpolated” precision values for 11 different recall

values, 0, 10, ..., 100 [%]. The mAP is obtained as the mean of

the AP values over all the query images. Considering the fact that

achieving 100% recall is not necessarily required in typical change

detection applications, we also evaluate mAP@X%recall for dif-

ferent percentage points X =10, 20, 50, and 100.

4. Approach
Our domain-adaptive change detection (DA-CD) framework

consists of three distinct steps: image adaptation, image descrip-

tion and image comparison. Image adaptation aims to map a

given reference (or background) image to a virtual image, using

the GAN-based image-to-image translation, in such a way that the

virtual reference image cannot be discriminated from raw images

in the target domain. Image description aims to extract a set of im-

age feature descriptors from either image for image comparison.

Image comparison aims to predict a change mask by comparing

local features between the query and reference images. The three

steps above are detailed in the following subsections.

4.1 Image Adaptation
In order to train a GAN that translates an image from the source

domain to the corresponding virtual images in the target domain,

we require a small number of paired source-target images as train-

ing data. We pair images based on their viewpoint locations. The

task of pairing requires global viewpoint information in the source

and target domains. Fortunately, in vehicular applications, it is of-

ten straightforward to obtain the small set of training images and

the aforementioned global viewpoint information. First, a small

number of training sets can be acquired by the vehicle’s short range

navigation in the target domain. Second, if the GPS measurement

of the viewpoints are available, a target image with nearest neigh-

bor viewpoint is selected as the corresponding image. Even in

a GPS-denied environment, pseudo GPS information can be ob-

tained with sufficiently high quality by using a modern visual place

recognition (VPR) technique. For example, in [10], we also have

developed a robust approach to cross-season VPR.

The GAN-based translation problem is often formulated as a

per-pixel regression problem. However, this formulation treats the

output space as “unstructured” in the sense that each output pixel

is considered conditionally independent from all others given the

input image. This issue is addressed by conditional GAN with a

structured loss function, which penalizes a joint configuration of

the output. In particular, the approach proposed in [6] aims for a

general-purpose solution to image-to-image translation problems.

The proposed approach consists of a generator based on U-Net

which allows low-level information to take a shortcut across the

network, and a discriminator based on PatchGAN that combines a

typical L1 loss (that enforces correctness at low-frequencies) with

an additional patch level loss (that models high-frequencies). We

also refer to the results in [6], where the approach was found to

be effective for a domain adaptation task of “day-to-night” image
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translation, which is partly similar to the application of a cross-

season image translation task that we present. In both the training

and translation tasks, we resize each input image to 256×256.

4.2 Image Description
We follow the literature and use the standard local image feature

descriptor, SIFT, as the basis for image comparison and change

detection. In this study, we are particulary interested in how effec-

tive intensity-non-invariant feature descriptors like SIFT descrip-

tors are when combined with our strategy of image adaptation. In-

tuitively, when the image adaptation is successful, the image com-

parison between the query image and the adapted background im-

age can be viewed as an in-domain image comparison task rather

than a cross-domain image comparison. Therefore, intensity-non-

invariant feature descriptors are expected to be effective for such a

pseudo in-domain image comparison. Each SIFT feature descrip-

tor is L1 normalized.

We basically use a Harris-Laplace detector as a feature keypoint

detector. This detector typically provides a set of well-localized

keypoints. However, in low texture image regions, it fails to de-

tect localized keypoints and the spatial density of keypoints tend

to be very low. To compensate, we also employ an alternative

dense sampling -based detector. The dense sampling -based de-

tector outputs a large number of spatially uniform keypoints even

in a low texture region. However, as a downside, such keypoints

from dense sampling tend to be not well-localized and have a low

invariance. This potentially yields a bias due to an increase in dis-

similarity between local features at these dense keypoints, which

then increases the false positive change detection. To deal with

this issue, we decided to penalize the LOC values of these features

by multiplying a pre-defined coefficient exp−d2
a (da � 1).

By default, the features from the virtual image are merged with

those from the raw reference image, and then the merged set is

used for the image comparison. In the experiments, we also con-

sider an alternative setting where the virtual image set alone is

used (without the merge) for image comparison. The above two

strategies are respectively termed “w/ merge” and “w/o merge”.

4.3 Image Comparison
The image comparison step adopts the nearest neighbor (NN)

search of local features. In offline mode, every feature in the ref-

erence image is indexed by an NN data structure. Once online, the

NN search is performed for each query feature over the reference

(raw/virtual) features. The search result provides a dissimilarity

score of a query feature’s NN reference features with respect to

the query feature, which can be interpreted to the LOC score of

the query feature. We measure the dissimilarity by calculating the

Euclidean distance | fi − fg| between query feature fi and its NN

feature fg. The search region on the image plane is defined as a

radius 10-pixel circular region centered at the query keypoint of

interest, for 256×256 query and reference images.

We also adopt a feature matching -based feature penalization.

This strategy has been found to be effective in our previous re-

search in [11]. The basic function of the feature matching ap-

proach is to conduct a similarity search for a given query feature

over a collection of spatially relevant reference features. If a strong

match is found, we can expect the actual possibility of the feature

being changed to be very low. Therefore, we penalize the LOC

values of these features by multiplying by pre-defined coefficient
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exp−d2
b (da � db � 1). To detect strong matches, we use the SIFT

ratio test [12] with a threshold value of 0.4. In preliminary ex-

periments, we also tested different threshold values ranging from

0.4 to 0.8 and found that the difference among these threshold val-

ues yield a low significance in change detection performance. The

feature matching is expected to effectively suppress false positive

change detection even when ambiguous anomaly features exist.

In typical change detection applications, we are interested in

pixel-level LOC, rather than feature-level LOC [8]. To obtain such

pixel-level LOC values, we introduce a coarse w×h image grid of

LOC values, where the width w and height h of the grid is set to

�W/10� and �H/10� for a W ×H image. The LOC value of each

grid cell is computed from the LOC values of query features that

belong to that grid cell by using max pooling.

In addition, we also explored the use of the VPR technique as

a method for selecting appropriate background images, which we

call a “background mining” strategy. In general, a virtual image

generated by a GAN-based image-to-image translation is often in-

consistent with the corresponding query image. This is natural

because the query image is unseen and not available at the GAN

training stage. To address this issue, here we use the VPR tech-

nique as a method for searching for a more relevant background

image to a given query image, over the space of all the virtual

images of the target domain. In this paper, the VPR algorithm

adopts a local feature NN search with a Naive Bayes nearest neigh-

bor (NBNN) distance metric, which was found to be effective in

a cross-domain VPR task in our previous research [10]. In ex-

periments, we consider and compare two distinct cases: one for

the normal background image output by the GAN-based image-

to-image translator, and one for the virtual background image se-

lected by background mining.

5. Experiments
We evaluated the change detection strategies using an NCLT

dataset [7]. As described in 3., the NCLT dataset is a large

scale, long-term autonomy dataset for robotics research collected

at the University of Michigan’s North Campus by a Segway ve-

hicle robotic platform. During the vehicle’s trip through outdoor

environments, it encounters various types of interesting changes

and nuisances. A critical and significant challenge in a change de-

tection task is to discriminate changes of interest from nuisances.

We consider two different scenarios of domain-shift: winter-to-

summer and summer-to-winter. Our winter image set is generated

from the datasets “2012/1/22”, “2012/1/15”, and “2013/1/10” in
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4: Examples of change detection.

NCLT, while our summer set is generated from “2012/8/4”, by

the following procedure. First, images from different seasons are

paired using the GPS information available in the NCLT dataset.

Then, a random subset of the paired images is used for training

the GAN-based image-to-image translator. Two translators corre-

sponding to winter-to-summer and summer-to-winter translation

tasks are trained using 100 and 100 paired training images, which

are independent from the test sets and randomly sampled from the

both domains. Then, every paired image is manually examined

and annotated with a bounding box of a change object. We ob-

tain 100 annotated image pairs as the test set, which consist of 64

summer-to-winter pairs and 36 winter-to-summer pairs.

We categorized small changes (e.g., 10×10 [pixels]) that typ-

ically originate from distant objects, into no-change because it is

challenging to detect such small changes via a visual change detec-

tion algorithm. As a result, such small objects are likely to cause

pseudo false-positive detection by change detection algorithms.

The average time-overhead for image translation was around 1.0

sec and the time-overhead for change detection was 1.0 sec on a

single PC (Intel Core i7-7700 3.2 GHz, GeForce GTX 1080).

Fig. 3 shows the mAP@X%recall performance for different

change detection strategies. As mentioned in 4.2, we consider

two settings, whether or not features from the virtual reference

images are merged with features from the raw reference image,

which are respectively called “w/ merge” and “w/o merge”. In

addition, we consider alternative settings and whether or not we

use the background mining described in 4.3, which is termed “w/

mining” and “w/o mining”. Figure 3 shows the mAP performance

for different combinations of these three strategies. It can be ob-

served that the combination “merge+mining” yields the highest

mAP@100%recall performance.

Fig. 4 displays examples of change detection results. From left

to right, each panel shows the input query image, prediction (red

boxes) and ground-truth (blue points) change detection overlaid on

the query image, a virtual reference image, and the input reference

image. Red boxes indicate prediction results corresponding image

grid cells with the top 5% LOC values. It can be seen that in

these examples, the virtual reference image preserves the color and

structure information and successfully generates a realistic virtual

image, while the edge information is often blurred or lost. It is

noteworthy that even with such erroneous edge information, the

change detection was successful as reported in Fig. 3.
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