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In recent years, research on chat dialogue systems has been attracted much attention. Typical chat dialogue
system selects and outputs an appropriate response from a dialogue database for the input user utterance. However,
it is not possible to output an appropriate response if the coverage of the database is limited. Therefore it is
necessary to augment the database beforehand. In this research, in order to amplify various kinds of responses in
the database, we propose a task to generate a complex sentence from a simple sentence. We first divide a complex
sentence into a main clause and a subordinate clause to learn a generator model of modifiers, and then use the
model to generate a modifier clause to create a complex sentence from a simple sentence. We present an automatic
evaluation metric to estimate the quality of models.
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Algorithm 1

chunks ←
index : noun idx ← []

d ← FALSE

for i = 0 to |chunks| − 1 do

if chunks[i] then

append i to noun idx

if chunks[i]

then

chunks[i]

d ← TRUE

break

end if

end if

end for

if d �= TRUE then

i ← min(noun idx )

chunks[i]

end if

return chunks
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[Dušek 16] Dušek, O. and Jurcicek, F.: Sequence-to-

Sequence Generation for Spoken Dialogue via Deep Syn-

tax Trees and Strings, in ACL (2016)

[Ji 14] Ji, Z., Lu, Z., and Li, H.: An Information Retrieval

Approach to Short Text Conversation, arXiv (2014)

[Stent 04] Stent, A., Prasad, R., and Walker, M.: Trainable

Sentence Planning for Complex Information Presentation

in Spoken Dialog Systems, in ACL (2004)

[Wen 15] Wen, T.-H., Gasic, M., Mrksic, N., Su, hao P.,

Vandyke, D., and Young, t. J.: Semantically Conditioned

LSTM-based Natural Language Generation for Spoken

Dialogue Systems, in EMNLP (2015)

[ 16] , ,

Haori , 22

(2016)

[ 14] , Project Next NLP

, SIG-SLUD, Vol. B4, No. 02, pp. 45–50 (2014)

4

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

4Pin1-11


