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Abstract  —  Energy optimization in smart grid has gradually shifted to agent-based machine learning method represented by the state of 

art deep learning and deep reinforcement learning. Especially deep neural network based reinforcement learning methods are emerging and 
gain popularity to for smart grid application. In this work, we have applied the applied two deep reinforcement learning algorithms designed 
for both discrete and continuous action space. These algorithms were well embedded in a rigorous physical model using Simscape Power 
SystemsTM (Matlab/SimulinkTM Environment) for smart grid optimization. The results showed that the agent successfully captured the 
energy demand and supply feature in the training data and learnt to choose behavior leading to maximize its reward. 
 

1  INTRODUCTION 

Energy grid system containing renewable 
energy resources(RES) such as photovoltaic 
energy, wind power as well as hydropower have 
been considered as alternative power supply 
configuration. It is renovating conventional grid 
systems, aiming at reducing the emission of 
CO2 while mitigating the global warming. A 
decentralized energy system is more robust and 
resilient against the unexpected natural 
disasters, which are frequently occur in countries 
such as Japan. However, due to the intermittent 
nature of RES, a mismatch between electricity 
supply and demand is often encountered and 
causes instability and limit of power output. As 
an effective approach to these challenges, smart 
grid has been proposed and has shown great 
technological innovation towards intelligent, 
robust and functional power grid [1][2].  

Smart grid evolves energy transmission among 
different sub-smart grid utilities, which finally 
contribute to the efficient energy management 
ecosystem of energy storage, energy supply, 
balanced load demand over large scale grid 
configuration.  Construction of efficient smart 
grid system is in principle a control optimization 
mathematical problem. A wide range of methods have 
been proposed to tackle this challenge including linear 
and dynamic programming as well as heuristic methods 
such as PSO, GA, game or fuzzy theory and so on[3]. In 
the recent years, studies on energy optimization in smart 
grid has gradually shifted to agent-based machine 
learning method represented by state of art deep learning 
and deep reinforcement learning. Especially deep neural 
network based reinforcement learning methods are 
emerging and gain popularity to for smart grid 

application[4][5].      
    In this work, we focus on the following issues and 
tasks: 
(1) Different from previous reports, we have developed 
our deep reinforcement learning algorithm embedded in 
a rigorous physical model using Simscape Power 
SystemsTM for smart power grid optimization. All the 
parameters used in smart grid represents the realistic 
electric circuits and detailed fluctuation regarding the 
voltage, frequency and phase can be therefore fully 
revealed, which are not available in previous reports 
where the constructed smart grid system could not output 
sufficient information.  
(2) For RL, model-free off-policy deep Q-learning suing 
MatlabTM is developed. DQN is suited for addressing 
continuous state space and discrete action space. Here we 
have focused on the discrete action control designed for 
switching the grid power supply/sell and battery charge 
/discharge.  
(3)  For continuous state and continuous action space, we 

Fig.1.  Sketch of smart grid optimization using deep 

neural network based reinforcement learning algorithm.   
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have self-developed a Gibbs deep policy gradient 
algorithm, in which we have hybridized the latest deep 
deterministic policy gradient with the deep actor-critic 
stochastic policy gradient.  

2. ALGORITHM AND MODEL 

(i) Deep Q-Learning (DQN): A general model which 
describes the main framework is given as follows.  In this 

sketch, we adopted deep Q-learning algorithm as an 
example to illustrate the learning principle: physical 
model of smart grid simulation environment based on 
Simscape Power SystemsTM was constructed. The state 
space is always continuous and action space is set either 
discrete or continuous for off-policy Q learning and 
deep policy gradient algorithm respectively.  A 
detailed operation flow is given as follows by the 
form of pseudo-simulation code: 

(ii) Gibbs Deep Policy Gradient (GDPG): 
Deterministic policy is in theory efficient at the late 
stage of simulation because the policy distribution is 
less variant and more deterministic. Policy gradient is 
usually formulated as follows, where   is the policy 
object function; is the function approximation 
parameter (in neural network, it is the weight w); s and 
a correspond to the state and action  is the 
state-action function under certain policy  

and  is the : 

 

policy distribution function.  David et al  has shown that 
if the policy is treated as deterministic, the above 
equation can be reformed as: [6] 

   
and if the action a is approximated as policy action 
function: 

 
using the chain rule   can be further 
extended as: 

 
and then policy parameter  is updated as the usual 
gradient decent: 

 
However, implementing the deterministic policy at the 

early simulation stage will inevitably cause high variance 
and slow convergence because the policy is far from 
optimal policy so the policy distribution is fairly stochastic 
and less deterministic with high bias. The hybridized 
algorithm is designed in such a way that both the advantage 
of deterministic and stochastic policy is assimilated thus a 
stable learning profile with fast convergence can be 
achieved.  

(iii) Neural Network Model: In this work, we use multilayer 
neural network including four hidden layers to approximate the 

state-action value function. The activation function is fixed at 
hyperbolic-tangent function and epsilon-greedy algorithm 
is utilized to enhance the exploration in the case of DQN 
for discrete action and re-parameterization. These 
techniques were used when using GDPG for continuous 
action space.  

3. RESULTS 

   Here we present one representative simulated results 
by employing DQN algorithm to optimize four discrete 
action controls: (1) Grid on/Battery off and (2) Grid 
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off/Battery on.  Action pair (1) was designed to deal with 
situation when the PV power exceeds the load demand 
and is able to get the reward by selling the electricity to 
Grid. On the other hand, Action pair (2) was designed for 
agent to learn to charge the battery during daytime for 
the discharge when the PV power is off during night time. 
The load demand can be supplied through either the grid 
or the battery and thus the agent has to learn how to 
control these actions to maximize the reward designed in 
advance. As shown in Fig.2 the action profile varied 
during learning process under the preset reward function. 
At the early stage, the agent showed random actions, as 
shown in Fig.2(a), where a frequent switch on/off was 
observed during training. In the middle of training, the 
agent gradually grasped the inherent feature between 
demand and supply and learnt how to choose stable 
action to maximize its reward. This can be seen in 
Fig.2(b) where constant on or off period were extended 
and the action profile experiences less noise than Fig.2(a). 
The agent made a decision to sell its surplus PV power 
to grid during the day time when its SoC remains high. 
In the latter training stage as shown in Fig.2(c) and (d), 
the agent successfully learnt to discharge its battery 
power during night instead buying electricity from the 
grid. More detailed results regarding the comparison 
between discrete action and continuous action will be 
presented at the conference. Deep insights related how to 
design various reward functions to train the agent for the 
different targets posed by smart grid energy system 

would also be presented.  

4. CONCLUSION 

We present here a deep reinforcement learning method 
applied for smart grid optimization. From the 
preliminary simulation results, the agent was able to 
catch the feature involved in the balance of load demand, 
PV power surplus and battery discharge/charge as well 
as grid integrate. The agent successfully learnt how to 
tune its action profile to maximize the reward function 
during training. More detailed results regarding to the 
comparison between DQN and GDPG and the key role 
played by reward function will be given at the conference.  
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Fig.2.  Agent training results using the DQN algorithm. (a) Early training stage; (b) Middle training stage; (c) and 

(d) latter training stage.    
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