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Although brain decoding techniques using functional magnetic resonance imaging (fMRI) have many potential real-world 
applications, the measuring cost of fMRI makes it difficult to realize many of such applications. Here, we propose a new 
decoding framework for estimating perceptual experiences evoked by visual materials with no additional fMRI measurement 
after model construction. Our framework consists of brain-activity prediction and perceptual decoding models constructed from 
individual brain data. Once the training of these models using movie-evoked fMRI data has been done, the framework combines 
these models and estimates each person’s perceptual experiences regarding novel scenes without any additional fMRI 
measurements. Our results showed that our framework well estimated perceptual experiences that were evoked by novel scenes, 
and the estimated contents varied across the models for individual persons. Thus, our framework may provide a new 
computational system for estimating personal perceptual experiences, evoked by arbitrary visual inputs, via the perceptual 
representation in the brain. 

 

fMRI

 [Huth 16  Nishida 17 Nishimoto 11]
CM

NeM sweets DONUTs®, 
http://www.nem-sweets.com/

fMRI
 

 [LeCun 15]

 

fMRI

 [Nishida 17] 

 

1A
 [Naselaris 11] 

fMRI

We

 
 

 

16 VGG [Simonyan 15] 

 [Güçlü 15]

1

VGG 8 5
3

8  
fMRI

1000
VGG 8

8
  

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

4Pin1-37



 

- 2 - 

1B

 
 

 

word2vec  [Mikolov 13] Word2vec

 
[Nishida 17] 100 word2vec

Wikipedia  
word2vec

1 50
1 5

word2vec 1

 

word2vec
1 word2vec

 

VGG

8
8

 

8
 

1C  

fMRI 8 5
3 23 40

 

Siemens 3T MRI MAGNETOM 
Prisma 64ch receiver coil multiband gradient 

1  

The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018

4Pin1-37



 

- 3 - 

echo-EPI sequence [multiband factor = 6] TR = 1000 ms TE = 
30 ms flip angle = 60° voxel size = 2 2 2 mm matrix size = 
96 96 number of slices = 72
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