
A SAT-based CSP Solver sCOP and

its Results on 2018 XCSP3 Competition

Takehide Soh∗1 Daniel Le Berre∗2 Mutsunori Banbara∗3 Naoyuki Tamura∗1

∗1Kobe University ∗2CRIL-CNRS, UMR 8188, Université d’Artois ∗3Nagoya University

Constraint Satisfaction Problem (CSP) is the combinatorial problem of finding a variable assignment which
satisfies all given constraints over finite domains. CSP has a wide range of applications in the research domains
of Artificial Intelligence and Operations Research. XCSP3 is one of major constraint languages that can describe
CSPs. More than 23,000 instances over 105 series are available in the XCSP3 database. In 2018, the international
XCSP3 competition was held and 18 solvers participated.

This paper describes the under development CSP solver sCOP and its results on the 2018 XCSP3 competition.
sCOP is a SAT-based solver which encodes CSPs into SAT problems and finds a solution using SAT solvers. Cur-
rently, sCOP equips the order and log encodings, and uses off-the-shelves backend SAT solvers. We registered sCOP
to two competition tracks—CSP-Standard-Sequential and CSP-Standard-Parallel—of the 2018 XCSP3 competition
and won both tracks.

1. Input of sCOP—XCSP3 Language
This section explains the XCSP3 language [Boussemart 17], an

input of the CSP solver sCOP. XCSP3 is an XML based constraint

language that can describe CSPs. Let’s start with an easy example

of XCSP3 and then explain its constraints.

1.1 Example
The graph coloring problem (GCP) is a problem whose goal is

to assign a color to each node in a given graph such that there is no

two same-colored nodes connected by an edge. Figure 1 shows an

instance of GCP.

This GCP can be represented by a CSP. We introduce five

variables n0, n1, n2, n3, n4. Each variable has the same domain

{0, 1, 2} which represents different colors like red, green, and

blue. We also introduce the conjunction of the six inequalities

representing the constraints of the GCP instance.

n0 �= n1 n0 �= n4 n1 �= n2

n1 �= n3 n2 �= n3 n3 �= n4

This CSP can be represented by the XCSP3 instance in Fig. 1.

Line 1 describes the format name “XCSP3” and the type “CSP” of

the given problem. Line 2 to 4 describe the five integer variable by

using array. The domain of those array variables is set to the range

from 0 to 2, and their identifier is set to “n”. Line 5 to 14 describe

the conjunction of the six inequalities.

1.2 Constraints in XCSP3
In the previous example, constraints are represented by using

intentional constraints (ne). Except intensional constraints, we

can use extensional and global constraints in XCSP3. This section

explains each kind of constraints.

Intentional constraints are constraints using the arithmetic, logi-

cal, and comparison operators. As arithmetic operators, add (ad-

dition), sub (subtraction), mul (multiplication), div (integer di-

Contact: Takehide Soh, Information Information Science and

Technology Center, Kobe University, 1-1 Rokkodai, Nada,

Kobe, 657-8501, soh@lion.kobe-u.ac.jp

0

3

4 1

2

<instance format="XCSP3" type="CSP">

<variables>

<array id="n" size="[5]"> 0..2 </array>

</variables>

<constraints>

<intension>

and(ne(n[0],n[1]),

ne(n[0],n[4]),

ne(n[1],n[2]),

ne(n[1],n[3]),

ne(n[2],n[3]),

ne(n[3],n[4]))

</intension>

</constraints>

</instance>

Figure 1: (top) GCP instance (bottom) its XCSP3 representation

vision), abs (absolute value), etc. can be used. As logical oper-

ators, not (¬), and (∧), or (∨), xor (⊕), iff (⇔), imp (⇒),

etc. can be used. As comparison operators, le (≤), lt (<), ge

(≥), gt (>), ne (�=), eq (=), etc. can be used. For instance, a

constraint (2x+3 < y)∨ z ≥ 1 can be represented in the follow-

ing intensional constraints of XCSP3.

<intension>

or(lt(add(mul(2,x),3),y),ge(z,1))

</intension>

1

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

1E2-OS-3a-03

Normalized
CSP

XCSP3
File

CNF
Formulas

Solution Model

1) Parsing
2) Normalizations

3) Propagations
4) Encoding

5) SAT Solving

Decoding

Figure 2: Framework of sCOP

Extensional constraints represent feasible (or infeasible) value

combinations of variables extensionally. It is also called table con-

straints. As the name suggests, constraints are often represented

by tables. For instance, one of the inequalities in the previous

GCP example, n0 �= n1 is represented by the following tables.

(Support Table for n0 �= n1)

n0 n1

0 1

0 2

1 0

1 2

2 0

2 1

(Conflict Table for n0 �= n1)

n0 n1

0 0

1 1

2 2

There are two types of extensional constraints: support and con-
flict. The former represents feasible value combinations of vari-

ables and the latter represents infeasible ones. Obviously, they

complement each other and one of them is enough to represent

constraints. The conflict table above can be represented in the fol-

lowing extensional constraints of XCSP3.

<extension>

<list> n[0] n[1] </list>

<conflicts> (0,0)(1,1)(2,2) </conflicts>

</extension>

Global constraints represent comparatively complex but useful

constraints to model applications. In XCSP3, 19 global constraints

are available. For instance, allDifferent is such a global constraint

ensuring mutually different values must be assigned to given vari-

ables. An implicit allDifferent constraints between nodes 1, 2, and

3 in the previous GCP instance can be represented in the following

constraints of XCSP3.

<allDifferent>

n[1] n[2] n[3]

</allDifferent>

Other than above, XCSP3 provides more advanced constructs

for symbolic/set/real/graph/stochastic/qualitative variables, soft

constraints, mono and multi objective optimization, etc. In XCSP3

competitions, a set of basic constructs named XCSP3-Core is used.

Interested reader is referred to the full specification ∗1.

2. SAT-based CSP Solver sCOP
sCOP [Soh 18] is a SAT-based CSP Solver written in Scala.

Given a XCSP3 instance file, sCOP finds a solution using a SAT

∗1 http://www.xcsp.org/specifications

solver. Figure 2 shows the framework of sCOP.

Following Sugar [Tamura 08] and Diet-Sugar [Soh 17],

sCOP encodes CSPs (XCSP3 instances) into SAT problem

in conjunctive normal form (CNF) using (i) the order encod-

ing [Tamura 09, Tamura 13] and (ii) the log encoding for Pseudo-

Boolean (PB) constraints [Soh 17]. Then, sCOP invokes a SAT

solver that would find a model if any. The obtained model is de-

coded into a solution of the XCSP3 instance. sCOP is publicly

available in its web page ∗2.

1) Parsing. Parsing of XCSP3 formatted file is done by using

an XCSP3 official tool XCSP3-Java-Tools ∗3. Currently, sCOP
accepts all constraints in the XCSP3-core language∗1.

2) Normalization. Before pre-processing, all constraints are trans-

lated into intensional constraints. This normalization is processed

as follows. Global constraints are translated into intensional con-

straints by a straightforward way but we use extra pigeon hole con-

straints for allDifferent constraints as in Sugar [Tamura 08]. Ex-

tensional constraints are translated into intensional constraints by

using a variant of multi-valued decision diagrams. This is a differ-

ence to ones in Sugar. All intentional constraints are normalized

to be in the form of CNF using Tseitin transformation. Literals of

this CNF-CSP are linear comparisons
∑

i aixi ≥ k where ai’s are

integer coefficients, xi’s are integer variables and k is an integer

constant.

3) Pre-processing: propagation. Constraint propagations are ex-

ecuted to the normalized CSP (clausal CSP, i.e., in the form of

CNF over linear comparisons
∑

i aixi ≥ k) to remove redundant

values, variables, and linear comparisons. Currently, it is done by

using an AC3 like algorithm.

4) Encoding into SAT. In sCOP, the order encoding [Tamura 09,

Tamura 13] and the log encoding are used. The order encoding

uses propositional variables px≥d’s meaning x ≥ d for each do-

main value d of each integer variable x. To encode linear compar-

isons, Algorithm 1 of the literature [Tamura 13] is used in sCOP.

The log encoding uses a binary representation of integer variables.

There are several ways to encode linear comparisons by using

those propositional variables. In sCOP, we replace all integer

variables with its binary representation—it gives us a set of PB

constraints. We then encode those PB constraints into CNF for-

mulas by using the BDD encoding [Eén 06]. sCOP basically uses

the order encoding but uses the log encoding in case that the huge

number of clauses is expected to be encoded. For this expectation,

the idea of domain product criteria [Soh 17] is used.

5) SAT Solving. By using DIMACS CNF files, sCOP’s backend

∗2 https://tsoh.org/sCOP/
∗3 https://github.com/xcsp3team/XCSP3-Java-Tools

2

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

1E2-OS-3a-03

SAT solver is switchable. In the 2018 XCSP3 competition, sCOP
uses MapleCOMSPS and glucose-syrup. A SAT solver Maple-
COMSPS ∗4 is used for sequential CSP solving. It is the winning

solver on the main track of the SAT competition 2016. It also

shows a good performance for solving CSP instances encoded by

sCOP. A SAT solver glucose-syrup ∗5 is used for parallel CSP

solving. It is the winning solver on the parallel track of the SAT

competition 2017.

Example. After saving the XCSP3 instances of Figure 1 as a plain

text file gcp.xml, the execution of sCOP returns the following

results using a default SAT solver.

$ java -jar scop.jar gcp.xml

<... encoding information ...>

s SATISFIABLE

v <instantiation>

v <list>n[0] n[1] n[2] n[3] n[4]</list>

v <values>2 0 2 1 0</values>

v </instantiation>

3. Results on 2018 XCSP3 Competition
International competitions of CSP solvers using the XCSP lan-

guage have been held since 2005. The first series were held with

earlier versions of XCSP languages and called International CSP

Solver Competition (CSC). CSCs were held in 2005, 2006, 2008

and 2009. After some break period, it is re-started in 2017 with

XCSP3. In those competitions, solvers are submitted from re-

search institutions over Europe and North America.

3.1 Overview of 2018 XCSP3 Competition
In 2018 XCSP3 Competition, there are the following 8 tracks.

Solver Seq/Par Timeout #Ins. #Sol.

CSP Standard Sequential 40 min. 236 14

Parallel 40 min. 236 4

COP Sequential 40 min. 346 8

Parallel 40 min. 346 1

Sequential 4 min. 346 7

Parallel 4 min. 346 1

CSP Mini Sequential 40 min. 176 11

COP Sequential 40 min. 188 7

CSP and COP are categories for Constraint Satisfaction Prob-

lem and Constraint Optimization Problem. There are two solver

categories: Mini is a category for “mini solvers” which is compar-

atively small and simple solvers. Also, those mini solvers must be

open source software. Standard is a category for other solvers. Se-
qential and Parallel are categories for sequential solvers and paral-

lel solvers that can use eight CPU cores. For COP category, there

is a “Fast” solver track whose goal is to evaluate solvers comput-

ing a good quality solution within a comparatively short time—4

minutes. In the other tracks, 40 minutes for each instance are given

to solvers. About benchmark, 236 instances are selected for CSP

categories and 346 instances are selected for COP categories. In

case for “mini solvers”, benchmark instances are limited to con-

tain only intensional constraints or some basic global constraints.

∗4 https://sites.google.com/a/gsd.uwaterloo.ca/
maplesat/

∗5 http://www.labri.fr/perso/lsimon/glucose/

Table 1: Ranking of CSP-Standard-Sequential Track

Rank Solver #Solved S/U %VBS

— VBS (Virtual Best Solver) 163 103/60 100

1 scop-order+maple 146 92/54 90

2 scop-both+maple 140 87/53 86

3 PicatSAT 138 85/53 85

4 Mistral-2.0 116 80/36 71

5 Choco-solver-4.0.7b seq 115 77/38 71

6 Concrete-3.9.2 92 64/28 56

7 OscaR - Conf. Ord. Res. 90 62/28 55

8 Concrete-3.9.2-SuperNG 84 55/29 52

9 Sat4j-CSP 83 40/43 51

10 OscaR - Conf. Order. 81 51/30 50

11 cosoco-1.12 79 53/26 48

12 BTD 76 31/45 47

13 BTD_12 76 32/44 47

14 macht 66 33/33 40

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160

Ti
m

e
(s

ec
)

#Solved

macht
BTD

BTD12
cosoco

Osca
sat4j

ConcNG
OscaR

Conc
chco
mist
pics

scopB
scopO

Figure 3: Cactus Plot of CSP-Standard-Sequential Track

Among those eight tracks, two tracks were canceled because there

was only one solver registered.

sCOP registered to CSP-Standard-Sequential and CSP-

Standard-Parallel tracks. The former is popular and the most com-

petitive track in a sense of the number of participated solvers.

3.2 Results of sCOP
Table 1 shows the solver ranking of the CSP-Standard-

Sequential track with regards to the number of solved instances.

The first row shows the abstract VBS (virtual best solver) which is

the collection of the best solver for each instance. The third col-

umn shows the number of instances solved and the fourth column

shows the number of satisfiable and unsatisfiable instances solved.

The fifth column shows the percentages of the number of solved

instances w.r.t. VBS. Among all 14 solvers, sCOP using the order

encoding solved the most number of instances. sCOP using the

both of the order and log encodings takes the second place.

Figure 3 shows the cactus plot whose x-axis is the number of in-

stances solved and y-axis is the CPU time in seconds. The meaning

of the cactus plot is that “each of x instances were solved within

y CPU seconds”. Note that “which x instances” are different for

each solver. For each plot, being righter means solvers solve more

instances, being lower means solvers solve instances faster.

3

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

1E2-OS-3a-03

Table 2: Number of Instances Solved: Figures are organized by instance series.

Series Name #Ins. Choco-solver-4.0.7b Mistral-2.0 PicatSAT scop-both+maple scop-order+maple Ctrs.

Bibd 12 4 8 8 8 8 pure int

CarSequencing 17 11 6 17 12 17 sup.

ColouredQueens 12 3 4 4 3 3 pure int

Crossword 13 5 3 2 3 3 sup.

Dubois 12 7 7 12 12 12 sup.

Eternity 15 7 7 6 6 6 sup.

Frb 16 3 3 3 5 5 conf./sup.

GracefulGraph 11 6 6 6 6 6 pure int

Haystacks 10 4 2 10 10 10 conf./sup.

Langford 11 7 9 9 9 9 pure int

MagicHexagon 11 4 5 3 3 3 pure int

MisteryShopper 10 10 10 10 10 10 sup.

PseudoBoolean-dec 13 4 6 4 7 8 pure int

Quasigroups 16 6 6 7 8 8 pure int

Rlfap-dec-scens11 12 11 10 12 12 12 pure int

SocialGolfers 12 6 6 8 8 8 pure int

SportsScheduling 10 3 4 4 4 4 sup.

StripPacking 12 7 8 11 11 11 sup.

Subisomorphism 11 7 6 2 3 3 conf./sup.

Total 236 115 116 138 140 146

Table 2 shows the number of instances solved. We picked up the

top five solvers and all figures are organized by 19 instance series.

The second column “#Ins.” denotes the number of instances in-

cluded in each series. The last column “Ctr.” denotes types of con-

straints: “pure int” means instances consist of only intensional and

global constraints, “sup.” means instances containing extensional

constraints of supports, “conf.” means instances containing exten-

sional constraints of conflicts. According to the results, sCOP is

particularly better than others in Pseudo-Boolean series and Quasi-

groups. Oppositely, it is worse than others in Subisomorphism.

In CSP-Standard-Parallel track, four solvers are registered.

sCOP using the order encoding is also better than other solvers.

All information contains, i) how instances are selected, ii) de-

scriptions of instance series and solvers, are available in the com-

petition proceedings [Lecoutre 18].

4. Conclusion
This paper describes the under development SAT-based CSP

solver sCOP and its results during the 2018 XCSP3 Competition.

The sCOP solver is written in Scala and currently uses the order

and log encodings to solve XCSP3 instances. The results of 2018

XCSP3 Competition showed that sCOP is superior to the other

state-of-the-art XCSP3 solvers in terms of the number of solved

instances within the given time limit. Future work is as follows.

Adapting COP is important. To improve performance, implement-

ing more SAT encodings and their hybridization are necessary. To

enhance usability, supporting other constraint languages such as

MiniZinc or Sugar’s language are also important future work.

References
[Boussemart 17] Boussemart, F., Lecoutre, C., Audemard, G.,

and Piette, C.: XCSP3 An Integrated Format for Benchmarking

Combinatorial Constrained Problems: XCSP3 Specifications—

Version 3.0.5, http://xcsp.org/format3.pdf (2017)

[Eén 06] Eén, N. and Sörensson, N.: Translating Pseudo-Boolean

Constraints into SAT, Journal on Satisfiability, Boolean Mod-
eling and Computation, Vol. 2, No. 1-4, pp. 1–26 (2006)

[Lecoutre 18] Lecoutre, C. and Roussel, O.: XCSP3 Com-

petition 2018 Proceedings, https://www.cril.

univ-artois.fr/~lecoutre/papers/XCSP3_

2018_Proceedings.pdf (2018)

[Soh 17] Soh, T., Banbara, M., and Tamura, N.: Proposal and

Evaluation of Hybrid Encoding of CSP to SAT Integrating Or-

der and Log Encodings, International Journal on Artificial In-
telligence Tools, Vol. 26, No. 1, pp. 1–29 (2017)

[Soh 18] Soh, T., Berre, D. L., Banbara, M., and Tamura, N.:

sCOP: SAT-based Constraint Programming System, in XCSP3
Competition 2018 Proceedings, pp. 93–94 (2018)

[Tamura 08] Tamura, N. and Banbara, M.: Sugar: a CSP to SAT

Translator Based on Order Encoding, in Proceedings of the 2nd
International CSP Solver Competition, pp. 65–69 (2008)

[Tamura 09] Tamura, N., Taga, A., Kitagawa, S., and Ban-

bara, M.: Compiling Finite Linear CSP into SAT, Constraints,

Vol. 14, No. 2, pp. 254–272 (2009)

[Tamura 13] Tamura, N., Banbara, M., and Soh, T.: PBSugar:

Compiling Pseudo-Boolean Constraints to SAT with Order En-

coding, in Proceedings of the 25th IEEE International Con-
ference on Tools with Artificial Intelligence (ICTAI 2013), pp.

1020–1027 (2013)

4

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

1E2-OS-3a-03

