
Dynamic Reduction of Guarded Constraints for

the Hybrid Systems Modeling Language HydLa

Takafumi Horiuchi Kazunori Ueda

Department of Computer Science and Engineering, Waseda University

HydLa is a language for modeling hybrid systems—dynamical systems that intermix discrete and continuous
behavior. Its adoption of a constraint-based framework benefits the language in various ways, such as allowing a
concise representation of systems and performing error-free high precision simulations. In spite of all the advantages,
the computations among sets of constraints become a bottleneck in simulation time when handling some large-scale
models. The purpose of this research lies in providing a method of improving the computational efficiency and
the scalability of the language and its simulator. This is achieved by considering the monotonic aspects in HydLa
models to dynamically reduce the size of guarded constraints. Results show that this approach is effective for models
that contain multiple objects represented by guard conditions. As for the model evaluated in an experiment in the
research, the overall computational time has reduced to approximately half the original length.

1. Introduction

In recent years, there has been a rapid growth of interest

in hybrid systems [Lunze] — systems that intermix discrete

and continuous behavior. HydLa [Ueda et al.], which is the

subject language of this research, is a modeling language for

hybrid systems. A notable feature of HydLa is that it al-

lows a concise representation of hybrid systems by directly

handling high-level descriptions of mathematical and logical

formulas as the source program. This feature is realized by

the adoption of a constraint-based framework. In HydLa,

constraints are the basic components that specify the be-

havior of models. These constraints are structured in the

form of a constraint hierarchy [Borning et al.], among which

the consistency is retained when processing the model.

The guaranteed-accuracy implementation of HydLa is

called HyLaGI [Matsumoto], which takes a HydLa model

as the input, simulates the model, and outputs the solu-

tion trajectory. HyLaGI has strong computational features

such as performing error-free symbolic calculations and han-

dling uncertain parameters. However, it is known that the

computations on constraint sets become a bottleneck when

the number of guarded constraints (i.e. constraints enabled

when guard conditions are entailed) is large.

In this paper, we observe the relation between the size

of guarded constraints and simulation time and propose a

method for improving the efficiency of simulations by con-

sidering the monotonic behavior in HydLa models to dy-

namically reduce the number of guarded constraints.

2. Guarded Constraints in Simulations

In the current simulation algorithm of HyLaGI, the sim-

ulation time increases in relation to the size of guarded con-

straints that appears in the model. This becomes a severe

Contact: Takafumi Horiuchi, Department of Computer Sci-

ence and Engineering, Waseda University, 3-4-1 Okubo,

Shinjuku-ku,Tokyo,169-8555,Japan,Bldg.63,5F-02,03-
5286-3340,horiuchi(at)ueda.info.waseda.ac.jp

1 // #define N 100

2

3 INIT_X(v) <=> x=0 & [](x’=v).

4 INIT_Y(h) <=> y=h & y’=0.

5 FALL <=> [](y’’= -9.8).

6 BOUNCE(l,r) <=> []((y- = 0) & (l <= x- < r)

7 => y’= -1.0*y’-).

8 BOUNCES := {BOUNCE(i,i+1) | i in {0..N-1}}.

9 INIT_X(1), INIT_Y(1), (FALL << BOUNCES).

10

11 // #hylagi -t 100

Figure 1: Model of Bouncing Ball on Split Surface

bottleneck when processing large-scale models that con-

tain a large number of objects represented by guarded con-

straints. The correlation between these two elements can

be observed in a series of simulations of the model shown

in Figure 1. This HydLa model represents a ball bouncing

on a flat surface, where the surface is split into N pieces,

each of which has the length of 1 unit. Constraints INIT X,

INIT Y, and FALL define the initial and default behavior of

the ball and BOUNCE describes the behavior of the ball when

it collides with the surface at height 0. In the constraint

declaration at line 9, FALL is assigned a weaker priority than

BOUNCE, therefore FALL is temporarily unadopted when the

two constraints conflict at the timing of the bounce. The

pieces of the surface are generated in constraint BOUNCES

with a list notation. For simplicity, the coefficient of resti-

tution, initial horizontal velocity, and initial height of the

ball are all set to 1. The model is simulated until time N,

where the ball travels from the left end to the right end of

the split surface.

As an experiment, the model is simulated multiple times,

each time with different values of N ranging from 10 to 200.

This setting will change the number of guarded constraints

in the model, with the increase of one for each increment on

the value of N. Other conditions are consistent throughout

1

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

1E3-OS-3b-02



the experiment. The result∗1 of the experiment is shown

in Figure 4 (circle plots). These data indicate that the in-

crease in the value of N leads to a longer simulation time.

The regression line among the plotted data (original) is rep-

resented by the following equation:

SimulationT ime = 1.1463N2 + 1.5554N + 0.4949 (1)

Thus, it can be inferred that, for this model, the simulation

time increases in proportion to the square of the number

of guarded constraints. In general, this behavior can be

a bottleneck in the simulation of large-scale models that

contain a large number of guarded constraints.

3. Location of the Bottleneck

To identify the location of the bottleneck in the current

simulation algorithm, the distribution of time consumption

among different computational units was measured. In a

simulation of the split surface model where N was set to

100, the entire simulation time was 1.23×108 seconds. The

most time consuming procedure was FindMinTime, a func-

tion that calculates the minimum satisfiable time of the

next discrete change, which consumed 1.17 × 108 seconds

(i.e. 96% of the entire simulation time). Taking this into

account, the computation of FindMinTime is the location

of the aforesaid bottleneck problem.

4. Reduction of Guarded Constraints

The computation of FindMinTime is performed by check-

ing the satisfiability of conditions in antecedents of all the

guarded constraints that appears in the model. This can

be a drawback in terms of efficiency of simulations. For ex-

ample, when considering a model of a ball bouncing down

a staircase (Figure 2), the ball will never interact with the

steps which it has already passed. In this case, it is unneces-

sary to check the satisfiability of guards that represent the

steps behind the current position of the ball. The present

simulation algorithm does not consider these situations, re-

sulting in redundant computations when iterating through

all of the guards during the computations of FindMinTime.

This inefficiency in the current simulation algorithm leads

to the proposal of this research—dynamically reducing the

number of guarded constraints. The aim of this proposal is

Figure 2: Concept of Omitting Verbose Guard Evaluations

∗1 Execution environment: CentOS 7.4.1708, AMD Ryzen
Threadripper 1950X 16-Core Processor, 64GB Memory, clang
6.0.0 compiler, Mathematica 11.3.0.

to avoid redundant calculations when evaluating the entail-

ment of guards and improving the computational efficiency

of simulations.

The removal of guarded constraints is safe only when it

is certain that the guard condition will never be satisfied in

the future. Inadequate removal of guards will lead to wrong

simulation results, which must be avoided. The decision of

whether the guards are removable or not can be made by

taking into account the concept of monotonicity, described

by the following propositions:

∀t ∈ (α, β)
d

dt
x(t) ≥ 0 (2)

∀t ∈ (α, β)
d

dt
x(t) ≤ 0 (3)

Proposition (2) ensures the monotonic increase of variable

x in the time interval (α, β) and proposition (3) ensures

the monotonic decrease. The proposed method considers

monotonicity of variables from two approaches, one dealing

with uniform monotonicity and another with alternating

monotonicity.

4.1 Approach to Uniform Monotonicity
The first approach considers the monotonicity of vari-

ables that are uniform throughout the simulation. This

situation corresponds to the case where α and β are set to

0 and MaxT (i.e. maximum simulation time), respectively,

in propositions (2) and (3). For instance, this behavior is

exhibited in the model of a ball bouncing on split surface,

where variable x keeps increasing from the beginning to the

end of simulation. The conceptual diagram of this approach

is illustrated in Figure 3, representing the case where a vari-

able is monotonically increasing throughout the simulation.

In order to apply this method for the dynamic reduc-

tion of guarded constraints, the truth/falsity of the uniform

monotonicity must be evaluated, which can be achieved by

using model checking techniques. After evaluating the uni-

formly monotonic behavior of variables, that information is

used to determine the removable guarded constraints.

Figure 3: Concept of Approach to Uniform Monotonicity

4.2 Approach to Alternating Monotonicity
The types of model that the above-mentioned uniform

approach can make use of is limited to cases where mono-

tonic aspects are preserved from the beginning to the end

of simulations. Variables that alternate its monotonic be-

havior during simulations would not be covered in this ap-

proach. To enhance the uniform approach and to enable

the handling of alternating monotonicity of variables, the

method can be enhanced by the integration with assertion

2

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

1E3-OS-3b-02



techniques. The basic concept of this method is equiva-

lent to the uniform approach, where, in the beginning of

the procedure, the uniformity of monotonicity is assumed

to hold throughout the simulation. The notable feature of

this method is that the uniformity is constantly asserted

by statements ASSERT(x’>=0) and ASSERT(x’<=0). When

violations on these conditions are detected, the simulation

is restarted from that time point with the assumptions on

monotonicity inverted.

Illustrated in Figure 5 is the concept of the enhanced

method. α and β in the diagram corresponds to those in

propositions (2) and (3). In the beginning of the procedure,

α is set to 0 and β is set to MaxT. The properties are not

determined to be held at this point. This is different from

the case in the method for uniform monotonicity, where ei-

ther of the propositions (2) or (3) were determined to be

held from the computations made prior to the simulation.

On the occurrence of assertion violations, that time point is

set as the new α and the procedure continues. This process

is repeated until the simulation time reaches MaxT. The

applicable guarded constraints are removed and reset dy-

namically during the simulation by using these information

of monotonicity.

5. Experimental Results

The approach to uniform monotonicity was implemented

and its effectiveness was evaluated with the model of a ball

bouncing on split surface (Figure 1). The comparison be-

tween the simulation time of the original algorithm of Hy-

LaGI and the algorithm with the proposed method is shown

in Figure 4. The regression line for the result of the pro-

posed method is represented by the following equation:

SimulationT ime = 0.6083N2 + 0.8763N + 1.691 (4)

By comparing equations (1) and (4), we can infer that the

simulation time with the proposed method is half the length

of the original. Since the method aims to improve simula-

tion efficiency by reducing the size of guarded constraints,

this proposal is expected to be effective for models that

contain large number of guarded constraints.

S
im

ul
at

io
n 

Ti
m

e 
(s

)

0

125

250

375

500

N

0 20 40 60 80 100 120 140 160 180 200

original proposed

Figure 4: Simulation Time of Split Surface Model

Figure 5: Concept of Approach to Uniform Monotonicity

6. Conclusion and Future Work

In this research, we proposed an optimization technique

for the simulation algorithm of HyLaGI. This was achieved

through dynamically reducing the size of guarded con-

straints that appears in the model, based on monotonicity.

Future work of this research includes evaluating the alter-

nating monotonicity approach. Another work to put effort

into is exploiting invariants other than monotonicity, for

this would enlarge the scalability of this research.

References

[Lunze] J. Lunze, “Handbook of Hybrid Systems Control:

Theory, Tools, Applications”, Cambridge University

Press, 2009.

[Ueda et al.] Ueda, K., Matsumoto, S., Takeguchi, A.,

Hosobe, H. and Ishii, D.: “HydLa: A High-Level Lan-

guage for Hybrid Systems”, In Proc. Second Workshop

on Logics for System Analysis, 2012, pp.3-17.

[Borning et al.] Borning, A., Freeman-Benson, B. and Wil-

son, M., “Constraint Hierarchies”, Lisp and Symbolic

Computation, Vol.5, No.3, 1992, pp.223-270.

[Matsumoto] Shota Matsumoto: “Validated Simulation of

Parametric Hybrid Systems Based on Constraints”,

Graduate School of Fundamental Science and Engi-

neering, Waseda University, Doctoral Thesis, 2017.

3

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

1E3-OS-3b-02


