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Automatic music composition is one of the most difficult and attractive challenges in the artificial intelligence
(AI) field. In order to tackle this challenge, an approach using interactive evolutionary computation (IEC) is
drawing attention because IEC takes human emotions into consideration. We have proposed an automatic music
composition system based on IEC with a surrogate model called an evaluation model. In the previous study,
the model is constructed with a Variational Recurrent Auto-Encoder (VRAE) to achieve quantitative evaluations.
However, it is not easy for a simple VRAE to map tunes’ features into a meaningful latent space regardless of their
lengths.

This paper focuses on the way to map tunes with different length into a good latent space and the application
for IEC. The evaluation model employs a hierarchical VRAE called segmented VRAE. The experiments are carried
out to show the effectiveness of the proposed method.
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batch size 512

embed units 256

hidden state 512

latent units 128

optimizer Adam

alpha (Adam) 0.001

beta1 (Adam) 0.05

beta2 (Adam) 0.001

dropout 0.8

loss fuction softmax cross entropy
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2: VRAE segmented VRAE

epoch accuracy latent loss reconstruction loss loss

VRAE 100 0.2866 0.02724 2.542 2.569

segmented VRAE 300 0.4183 0.1664 2.081 2.248

3: MLPS-GP

Ne 30000

rdump 0.8

Dinit 3

α 1

β 2.081

td [sec] 15

4:

fd(mt, x) fo(x, x̂) F (x)× 10−2

16.02 2.622 5.196

1.59 1.210 0.611
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