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It is suggested that Deep Neural Networks (DNN), which continues to develop in recent years, has a function
to extract information of data sets necessary to achieve a given task by modeling the distribution as a manifold.
In addition to confirming the usefulness of DNN technology, numerous researchers and engineers are developing
various DNN algorithms and tuning parameters. This situation means that enormous knowledge on the manifold
structure for various data sets is being accumulated. The purpose of this research is to propose a method to extract
manifold structure with complex shape extracted in an interpretable form. Specifically, we propose a method to
extract the symmetry of manifold for coordinate transformation. Based on the Noether’s theorem in physics, we
develop the method to estimate the conservation law of the system. Applying the proposed method to the time
series data of the moving object according to the central force potential, it was confirmed that symmetry according
to the conservation law of angular momentum could be extracted.
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