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Many studies for sightseeing route recommendation use the formulation of Selective Traveling Salesman Problem
or its extension. However, this formulation uses the costs of the shortest paths between spots as the weights of edges
in a graph, which means that the variety of routes between spots is ignored. Uses might prefer different routes than
the shortest path, such as the route along the river, forest, or sea if they have enough time. This paper proposes a
method to recommend routes by considering the balance between staying time and traveling time. Extending the
Edge Vector-based formulation, the proposed method utilizes inner routes in a spot to represent the staying time
as the costs of those inner routes. An experiment using an artificial data set shows that the proposed method can
optimize the staying time and traveling time concurrently.
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