辺ベクトルによる定式化を用いた柔軟な経路推薦手法の提案

Proposal of Flexible Route Recommendation Method Employing Edge Vector－Based Formulation

柴田祐樹＊1 高間康史＊1
Hiroki Shibata Yasufumi Takama

＊1首都大学東京
Tokyo Metropolitan University

Abstract

Many studies for sightseeing route recommendation use the formulation of Selective Traveling Salesman Problem or its extension．However，this formulation uses the costs of the shortest paths between spots as the weights of edges in a graph，which means that the variety of routes between spots is ignored．Uses might prefer different routes than the shortest path，such as the route along the river，forest，or sea if they have enough time．This paper proposes a method to recommend routes by considering the balance between staying time and traveling time．Extending the Edge Vector－based formulation，the proposed method utilizes inner routes in a spot to represent the staying time as the costs of those inner routes．An experiment using an artificial data set shows that the proposed method can optimize the staying time and traveling time concurrently．

1．はじめに

観光旅行をする際，ガイドブックや旅行会社が提供する観光 ツアーを利用するのではなく，SNS などの Web から入手し た情報を用いて旅行者自身で観光計画を立案することも増えて きている。観光情報サイトなどでは，エリアなどの指定条件を満たす観光スポットをランキング形式で提示するサービスを提供しているが，知名度の高いスポツトや宣伝に力を入れている スポットが上位に表示される傾向がある。ユーザの検索行動と して，ランキング上位の数件のみしか確認しないことが一般的 であるため，結果として個人の趣味嗜好に合った観光地を訪れ る機会の損失を招き，一部の観光地へ旅行客が集中するなど，旅行客，観光地側双方に不利益を生じる。こういった問題を防 ぐためにも，ユーザの好みに応じたスポツトを選び，限られた時間で効率よく巡回する経路を提案する観光経路推薦手法は重要であり，研究が進められている［松田 04］［Lim 17］．

与えられた節点全てを巡回する最短経路を求める問題は Trav－ eling Salesman Problem（TSP）［Gutin 06］として古くから研究されている．NP－Hard［Yannakakis 91］に属する TSP を解くためには近似解法が用いられ，代表的なものには 2－ Optimization（2－Opt）法［Helsgaun 09］，Simulated Anneal－ ing（SA）［Kirkpartrick 83］がある．さらに，スポットに価値を付加し，与えられた総負荷制限の中で価値の総和が最大となる経路を選ぶ問題として，Selective Traveling Salesman Prob－ lem（STSP）［Laporte 90］が定式化されている。また，STSP を拡張し，訪れた時間に依存して価値が変化する問題を文献 ［松田 04］では最適観光経路問題として定式化しており，文献 ［Lim 17］では同様の定式化において，スポットの価値を Web から取得したデータを用いて推定する方法を提案している。

これらの既存研究はいずれも，節点にスポットを割当て，節点間の辺の重みに，スポット間を結ぶ最短経路負荷（コスト） を割り当てる，STSP の定式化を利用しているが，この定式化 では特定の交通機関や道路しか用いられないことに等しい。こ れに対し文献［柴田 19a］ではスポツトのみでなく，途中の経路 における街並みや景観等もユーザにとって重要な因子であると

連絡先：高間康史，首都大学東京，東京都日野市旭が丘 6－6， email：ytakama＠tmu．ac．jp

し，これらを考慮可能な観光経路推薦手法（以降 Edge Vector： EV と呼ぶ）を提案している。スポットおよび経路に関する価値や負荷すべてを辺に対する重みとして定式化することで，ス ポットと経路の情報を統一的に扱い，探索の過程において両者 を同時に調整しながら最適経路の発見を可能としている。

本稿ではEVを更に拡張し，スポット内に配置した冗長な経路を割り当てられた価値に応じて選択することによりスポッ トへの滞在時間をモデルする手法を提案する。提案手法によ り，滞在時間，途中経路を同時に決定可能となるため，柔軟な経路推薦手法が実現できる。人工データセットを用いた評価実験により，提案手法が有効に動作することを示す。

2．辺ベクトルを用いた観光経路推薦問題の定式化と SA による近似解法

本節では EV の定式化と，同文献で用いられる近似解法に ついて述べる。また，各用語の命名が曖昧であると考えられる ものについては，対応関係を示しながら，本稿で新たに定義し たものを用いて説明する。
\mathcal{N} を節点の集合， \mathcal{E}_{p} を辺の全体集合とする。 \mathcal{E}_{p} は問題に与えられた辺（定義辺）と後述する自己回帰辺，仮想辺 ${ }^{* 1}$ を含む。辺 $e\left(\in \mathcal{E}_{\mathrm{p}}\right)$ に対し，$n_{\mathrm{st}}(e)$ を e の始点，$n_{\mathrm{ed}}(e)$ を e の終点としたとき，これらは $\bigcup_{e \in \mathcal{E}_{\mathrm{p}}}\left(n_{\mathrm{st}}(e), n_{\mathrm{ed}}(e)\right)=\mathcal{N}^{2}$ の関係を満たすものとする．
$|\mathcal{N}|$ 個の辺からなる経路を含む辺ベクトルを $e:=$ $\left(e_{i}|i=1,2, \ldots,|\mathcal{N}|)\right.$ と定義する．$n_{\text {st }}\left(e_{1}\right)$ は経路の始点， $n_{\mathrm{ed}}\left(e_{|\mathcal{N}|}\right)$ は経路の終点であり，最適化中変化しない。辺 $e\left(\in \mathcal{E}_{\mathrm{p}}\right)$ のうち，$n_{\mathrm{st}}(e)=n_{\mathrm{ed}}(e)$ であるものを自己回帰辺と呼ぶ。辺ベクトルは自己回帰辺を含むことで，要素数 を固定としながら様々な経路を表現することができる。図1 では，定義辺を黒線で表し，輪を描いているものが自己回帰辺，青で示すものは辺ベクトルに含まれる定義辺である。 この図は，節点 $1,2,7,8$ をたどる経路の例であり，対応する辺ベクトルは $\left(\left(n_{\mathrm{st}}\left(e_{i}\right), n_{\mathrm{ed}}\left(e_{i}\right)\right) \mid i=1,2, \ldots, 8\right)=$ $((1,2),(2,7),(3,3),(4,4),(5,5),(6,6),(7,8))$ となる．

また，この手法では，仮想辺を用いることで， 2 辺の操作の

[^0]

図 1：グラフの例．

図 2：仮想辺を用いた経路拡張の例。

みにより経路の変更をしながら探索を行う。図2に示す経路変更の例では，赤線により仮想辺を示している。定義辺上に乗 らない仮想辺を経由することで，本来は 4 つの自己回帰辺を定義辺に変換する必要がある変化を， 2 辺の置換を 4 回繰り返 すことで表現している。本稿では，定義辺と自己回帰辺を合わ せて実辺と呼び，その全体集合を $\mathcal{E}\left(\subset \mathcal{E}_{\mathrm{p}}\right)$ とする。仮想辺の集合は \mathcal{E} の補集合となる。

経路は Boltzmann 分布［Metropolis 53］から確率的に生成 されるとモデル化し，最適解を SA により近似的に求める。e の確率変数を \mathbf{e}_{Λ} ，その分布 $p\left(\mathbf{e}_{\Lambda}\right)$ を式（1）により定義する。 $\Lambda=\{1,2, \ldots,|\mathcal{N}|\}$ は辺ベクトルの各要素に対する添字の集合 である。本稿において，同じ添字集合を持つ確率変数は独立同分布に従うものとする。

$$
\begin{equation*}
p\left(\mathbf{e}_{\Lambda}\right)=\frac{1}{\sum_{\mathbf{y}_{\Lambda}} \exp \left(-\frac{1}{\mathrm{k} T} \phi\left(\mathbf{y}_{\Lambda}\right)\right)} \exp \left(-\frac{1}{\mathrm{k} T} \phi\left(\mathbf{e}_{\Lambda}\right)\right) \tag{1}
\end{equation*}
$$

T は温度である。また， k は Boltzmann 定数であり，問題 ごとに適切な値を設定する。 $\phi\left(\mathbf{e}_{\Lambda}\right)$ は目的関数であり，この値 が小さくなる程， \mathbf{e}_{Λ} の出現率が高くなり，T が小さくなるほ どこの傾向が強くなる。SA ではこの性質を用いて最適解の近似解を生成するため，目的関数の値が小さな状態が望ましい経路を表すように定式化を行う。 ϕ を式（2）により定義する。文献［柴田 19a］の定式化と多少異なるが，本質的には同じであ り，3．節における提案手法の説明に同一の式を利用可能とし ている．$\alpha_{\mathrm{s}}=0$ としたものが，EV の定式化に対応する ${ }^{* 2}$ 。

$$
\begin{align*}
& \phi\left(\mathbf{e}_{\Lambda}\right)=F_{\text {res }}\left(\sum_{i \in \Lambda} f_{\mathrm{c}}\left(\mathbf{e}_{i}\right)+\alpha_{\mathrm{s}} \sum_{i \in \Lambda} f_{\mathrm{s}}\left(\mathbf{e}_{i}\right)-C_{\mathrm{c}}\right) \\
&-\sum_{i \in \Lambda} f_{\mathrm{d}}\left(\mathbf{e}_{i}\right)+\alpha_{\mathrm{a}} \sum_{i \in \Lambda} f_{\mathrm{s}}\left(\mathbf{e}_{i}\right) \tag{2}
\end{align*}
$$

$f_{\mathrm{c}}(e)$ は e の負荷，$f_{\mathrm{d}}(e)$ は e の価値，$f_{\mathrm{s}}(e)$ は仮想辺に対す る負荷であり，式（3）により定義される。

$$
\begin{equation*}
f_{\mathrm{s}}(e)=f_{\mathrm{c}}(e)-\sum_{s \in S(e) f_{\mathrm{c}}(s)} \tag{3}
\end{equation*}
$$

各値は辺の向きによらず，$e \notin \mathcal{E} \Rightarrow f_{\mathrm{c}}(e)=0, f_{\mathrm{d}}(e)=0$ お よび $\forall e, f_{\mathrm{d}}(e)<f_{\mathrm{c}}(e)$ を満たすものとする。後者の条件は次
$* 2$ 文献［柴田 19a］ではさらに f_{s} に対し微小な定数項を加算してい る等の違いがあるが，それらの影響がほぼ無いことを事前実験に確認しているため，詳細については省略する

図 3：制約関数の概形．STSP：STSP，EV：文献［柴田 19a］， EV2：提案手法．

の段落で説明する STSP の制約を無制限に超えた経路が生成 されることを防ぐものである。 $S(e)(\subset \mathcal{E})$ は辺 e の終始点を結ぶ最短経路を構成する辺の集合である。また，$S(e)=\emptyset \Rightarrow$ $f_{\mathrm{s}}(e)=\infty$ とする。EV の定式化において，α_{a} は仮想辺を消滅させるための罰則係数であり， 1 以上で，仮想辺が最終的に問題なく消滅する程度に1に近い値を用いる。
$F_{\text {res }}: \mathbb{R} \rightarrow \mathbb{R}$ は経路負荷に対するSTSP の制約を表現する関数であり，C_{c} は制約値である。観光経路推薦においてこの制約値は，経路長や旅行時間に対応する。STSP，EV，提案手法（EV2）で用いる制約関数の概形を図3に示す。STSPによ る定式化は C_{c} を超える経路を認めないため，目的関数は C_{c} を堺に無限大の値を取る。このような目的関数を用いた最適化では，経路長が C_{c} 付近となる状態の近傍探索における効率 が低下し，また，興味のあるスポットがあれば，多少の制約違反が許容される観光旅行において妥当なモデルとは言えない。 これに対し，EV ではある程度の誤差を認め，最適化効率を向上させたうえで，より現実的なモデルとしている．EV2 の持 つ性質については 3．節において説明する．EV，EV2 に共通 して利用する定式化を式（4）に示す。

$$
F_{\mathrm{res}}(x)=\left\{\begin{array}{lll}
\alpha_{\mathrm{g}} x+c_{1} & , & x<x_{\mathrm{m}} \tag{4}\\
c_{2} x^{2}+c_{3} x & , & x_{\mathrm{m}} \leq x \leq \sigma^{2} \\
x+c_{4} & , & \sigma^{2}<x
\end{array}\right.
$$

各設定値を，$F_{\mathrm{res}}^{\prime}(0)=\max \left(\alpha_{\mathrm{g}}, 0\right), c_{1}=c_{2} x_{\mathrm{m}}^{2}+c_{3} x_{\mathrm{m}}-$ $\alpha_{\mathrm{g}} x_{\mathrm{m}}, \quad c_{2}=\left(1-c_{3}\right) /\left(2 \sigma^{2}\right), c_{3}=\max \left(\alpha_{\mathrm{g}}, 0\right), x_{\mathrm{m}}=\left(\alpha_{\mathrm{g}}-\right.$ $\left.c_{3}\right) /\left(2 c_{2}\right), c_{4}=c_{2}\left(\sigma^{2}\right)^{2}+c_{3} \sigma^{2}-\sigma^{2}$ と定めたとき，$\alpha_{\mathrm{g}}=-1$ において，この関数はEV のものに対応する．σ^{2} により違反 の許容度合いを調節することが可能である。

SA 法において，Boltzmann 分布を近似するために Gibbs Sampling（GS）法［Geman 84］を用いる．経路変更を行うため の最小要素は二つの辺であるため，GS 法において利用される部分空間として辺ベクトル中の 2 辺を選ぶ。この 2 辺に対する添字を $i, j(\in \Lambda)$ としたとき，これら以外の添字 $\Lambda \backslash\{i, j\}$ で定義される変数により条件付けられた分布は式（5）と書ける。

$$
\begin{align*}
& p\left(\mathbf{e}_{\{i, j\}} \mid \mathbf{e}_{\Lambda \backslash\{i, j\}}\right)= \\
& \frac{\exp \left(-\frac{1}{\mathrm{kT}} \phi\left(\mathbf{e}_{\Lambda}\right)\right)}{\sum_{\mathbf{y}_{\{i, j\}}} \exp \left(-\frac{1}{\mathrm{k} T} \phi\left(\mathbf{y}_{\{i, j\}}, \mathbf{e}_{\Lambda \backslash\{i, j\}}\right)\right)} \tag{5}
\end{align*}
$$

添字 Λ の部分集合 M を添え字に持つ確率変数は対応する部分空間を構成し，式（6）の性質が満たされるものとする。

$$
\begin{equation*}
p\left(\mathbf{e}_{\Lambda \backslash M}\right)=\sum_{\mathbf{y}_{M}} p\left(\mathbf{y}_{M}, \mathbf{e}_{\Lambda \backslash M}\right), M \subset \Lambda \tag{6}
\end{equation*}
$$

ここで，$\sum_{\mathbf{y}_{M}}$ は \mathbf{y}_{M} の状態空間についての総和を示す ［Bishop 06］．この状態空間には 2－Opt 法に対応する，経路 としての制約を満たすものを与える。

図 4：道路ネットワークに対するモデル化．（a）：STSP ベース の手法，
（b）：EV，
（c）：提案手法のモデル化．

3．提案手法

本稿では，EV の定式化を拡張し，スポットにおけるユーザ の滞在時間と，途中経路を同時に最適化可能な推薦手法を提案 する．EV では，スポットに一つの辺を割り当て，その移動時間として滞在時間を表現しており，スポットにおける滞在時間 は固定的である。しかしながらこの定式化において，「興味のあ るスポツトは時間の許す限り長く滞在したい」などのような，実際によく行われる柔軟な調整を考慮することができない。そ こで本稿ではスポット内に冗長な経路を含むグラフを配置し，辺に与える価値に応じて生成される経路を決定する手法を提案 する。
図4（a）に，STSP ベースの従来手法，（b）にEV，（c）に提案手法による定義辺配置の様子を示す。（a）のモデル化は，ス ポットに対応する節点への重みの一つとして固定的な滞在時間 を表現する．（b）においては，スポットに対し辺を配置し，そ の負荷 $\left(f_{c}\right)$ として滞在時間を表現している。辺か節点かの違 いはあるが，スポットに対する滞在時間が固定値となる点で （a）と同様である。

これらに対し，経路全体を考慮して各スポットの滞在時間を柔軟に調節可能とするため，本稿では（c）で示されるような，冗長な経路をスポット内に配置するモデル化を提案する。ス ポツトの滞在時間を，「スポット内に存在する辺のうち，経路 として選択されたものが持つ負荷の総和」とみなすことで，長 い滞在時間はスポット内の咨長な経路をめぐる行動としてモデ ル化する。このとき，人気のスポットや関心のあるスポット内 にある辺の価値 $\left(f_{\mathrm{d}}\right)$ を高くすることで，スポット内の辺を選択されやすくすることが可能である。滞在時間を最適化中に決定することができれば，行きたいスポットをすべて巡っても若干の余裕がある場合に，好きなスポットの滞在時間を長くした り，そのほかのスポットを短時間寄り道したり，あるいは土産物店やレストランで時間を潰すといったような柔軟な経路を生成可能となる。

ここで，提案手法で用いる目的関数 ϕ について説明する。定式化には 2．節でも説明したとおり式（2）を用い，式（4）で定義する制約関数 $F_{\text {res }}$ の形状には図 3 中の EV2 に該当する， $\alpha_{\mathrm{g}}>0 \wedge \alpha_{\mathrm{g}} \approx 0$ と設定したものを用いる［柴田19b］．EV は C_{c} に極小値を持つ形状となっており，訪れるべきスポットが ない場合でも経路長が C_{c} に近づくように最適化が行われるた め，無駄な経路が生成されることから望ましい定式化ではな い。これに対しEV2は経路長に対し常に傾きが正となるため，無駄な経路を削減するものとなっている。
α_{g} には，C_{c} 以下の経路長において，価値がそれほど大きく ないスポットを無視してしまうことがない程度に小さな値を用 いる。この値は， $\min _{e} f_{\mathrm{d}}(e) / f_{\mathrm{d}}(e)$ に対し，定義辺の与え方に のみ依存するため，事前実験により決定することができる。

式（2）中のパラメータについては，文献［柴田19b］に従い， $\alpha_{\mathrm{s}}=1, \alpha_{\mathrm{a}} \approx 0 \wedge \alpha_{\mathrm{a}}>0$ と設定する。これにより EV に比べ

図 5：4つのスポットを持つ人工データセット．太線で描かれ た辺は右側のグラフに対応する。黒破線下の［］内の数字は各辺の f_{c} の値を示す。四角は始点，三角は終点をそれぞれ表す。

探索効率が向上し，咒長経路の導入による問題の大規模化に対応することができる。 α_{a} には事前実験を行い，定義辺上を十分に探索可能である程度の微小な値を設定する。

4．評価実験

図5に示す人工データセットを用い，経路生成を行った結果を示す。このデータセツトはスポツト内に経路が配置され， スポット間の経路探索も含む，提案手法が対象とするモデルに該当する。太線で描かれた辺はスポットを示し，図の右側にあ るグラフに対応する。［］内の数字は直上にある辺の f_{c} の値で ある。このグラフには 4 つのスポット，Spot 1, Spot 2 ，Spot 3，Spot 4 があり，破線で描かれる辺 $e(\in \mathcal{E})$ における f_{d} の値は以下のように設定する。

$$
\begin{array}{ll}
\text { Spot1 }: f_{\mathrm{d}}(e)=0.8 f_{\mathrm{c}}(e) & \text { Spot2 }: f_{\mathrm{d}}(e)=0.6 f_{\mathrm{c}}(e) \\
\operatorname{Spot} 3: f_{\mathrm{d}}(e)=0.4 f_{\mathrm{c}}(e) & \text { Spot4 }: f_{\mathrm{d}}(e)=0.2 f_{\mathrm{c}}(e)
\end{array}
$$

また，これら以外のすべての辺 e において，$f_{\mathrm{d}}(e)=0$ とし，$f_{\mathrm{c}}(e)$ は図中に示す幾何学情報に基づいた距離に等し いものとする．四角は始点，三角は終点をそれぞれ示す。こ の人工データセットに対して，制約値（予定旅行時間）$C_{\mathrm{c}}=$ $0.00,0.25,0.50, \ldots, 110$ についてそれぞれ 32 回の試行を行い，各スポットの滞在時間について平均値を求め比較する。パラメー夕の設定には $\alpha_{\mathrm{s}}=1, \alpha_{\mathrm{g}}=0.01, \sigma^{2}=0.1, \mathrm{k}=2, \alpha_{\mathrm{a}}=0.005$ を用い，温度変化は $T(t)=10^{-3 t}$ とした。 t が 10^{-5} 進むごと にサンプリングを行い，文献［柴田 19a］で提案されている近似的棄却サンプリングの有効範囲には $K=16$ を用いた。

実験結果を図 6 に示す。Moveはスポット間の移動時間 $[-]$ を示す．Spot 3 が終始点に近い場所にあるため，制約値（予定旅行時間）C_{c} が小さい場合にこのスポットが優先されてい るが，大きくなるにつれ，より f_{d} の値（価値）の高いスポット が優先的に選択されている。また，大きくなった C_{c} のあまり が生じた場合にも Spot 3 を経由する，寄り道のような経路を生成していると言える。スポット間の移動時間は $C_{\mathrm{c}}=10,30$付近など，スポツトが経路に追加されるときにのみ増加してお り，このことから提案手法は不必要に経路を拡張しないことも わかる．これらの結果から，提案手法では，スポツト間の経路探索を行いつつ，拀長な経路による滞在時間表現が可能である ことがわかる。

5．おわりに

本稿では，辺ベクトルによる定式化を用いた観光経路推薦手法を拡張し，スポット間の途中経路とスポットにおける滞在時

図 6：C_{c} の各値に対し，人工データセットにおいて生成され た経路に含まれる各スポツトの滞在時間とスポット間の移動時間の総和。

間を同時に調整可能であるような，柔軟な経路推薦手法を提案 した。今後の展望として，各スポットに対するユーザの飽きを考慮することで，1日程度に渡る長期間の旅行計画にも適用可能な手法に拡張することが考えられる。また，道路ネットワー クを用いた評価実験を行い，ユーザの求める旅行計画を実際に生成可能であることを検証する予定である。

謝辞

本研究は JSPS 科研費 $16 \mathrm{~K} 12535,15 \mathrm{H} 02780$ の助成および首都大学東京傾斜的研究費（全学分）学長裁量枠戦略的研究プ ロジェクト戦略的研究支援枠「ソーシャルビッグデータの分析•応用のための学術基盤の研究」によるものです。

参考文献

［Gutin 06］Gutin，G．and Punnen，A．：The traveling sales－ man problem and its variations，Springer Science \mathcal{G} Business Media， 2006.
［Yannakakis 91］Yannakakis，M．：Expressing combinatorial optimization problems by linear programs，Journal of Computer and System Sciences，Vol．43，No．3， 1991.
［柴田 19a］柴田祐樹，高間康史：辺ベクトルを用いた観光経路推薦問題の定式化と焼きなまし法による解法の提案，知能と情報，Vol．31，No．1， 2019 。
［Laporte 90］Laporte，G．，Martello，S．：The selective trav－ elling salesman problem，Discrete applied mathematics， Vol．26，No．2－3，pp．193－207， 1990.
［松田 04］松田善臣，名嘉村盛和，姜 東植，宮城 隼夫：最適観光経路問題とその解法，電気学会論文誌 C，Vol．124，No． 7，pp．1507－1514， 2004.
［Lim 17］Lim，K．，Chan，J．and Karunasekera，S．：Per－ sonalized itinerary recommendation with queing time awareness，Proc．40th SIGIR，pp．325－334， 2017.
［Helsgaun 09］Helsgaun，K．：General k－opt submoves for the LinKernighan TSP heuristic，Mathematical Pro－ gramming Computation，Vol．1，No．2－3，pp．119－163， 2009.
［Kirkpartrick 83］Kirkpartrick，S．，Gelatte，C．，Jr．and Vec－ chi，M．：Optimization by simulated annealing，Science， Vol．220，No．598，pp．671－680， 1983.
［Metropolis 53］Metropolis，N．，Rosenbluth，A．，Rosen－ bluth，M．and Teller，A．：Equation of state calculations by fast computing machines，The Journal of Chemical Physics，Vol．21，No．6，pp．1087－1092， 1953.
［Geman 84］Geman，S．and Geman，D．：Stochastic relax－ ation，Gibbs distributions，and the Bayesian restora－ tion of images，IEEE Transactions on Pattern Analy－ sis and Machine Intelligence，Vol．PAMI－6，No．6，pp． 721－741， 1984.
［Bishop 06］C．M．Bishop：Pattern recognition and ma－ chine learning，Chapter 11，Springer，8th printing， 2006.
［柴田 19b］柴田祐樹，高間康史：辺ベクトルを用いた経路推薦問題の解法における目的関数の改善に関する提案，第 21回インタラクティブ情報アクセスと可視化マイニング研究会， 2019 ．

[^0]: ＊1 文献［柴田 19a］では実在辺，自己ループ辺，非存在辺と呼ばれる

