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This paper aims at the discovery of link roles in order to understand links on the network. This work presents
a flexible, general framework including graph transformation, representation learning, role assignment, and sense
making. We use Edge-dual graph to regard links as nodes and struc2vec to embed links based on roles. We show our
model successfully embed the similar links into the low 2-dimensional space on visualization task. Furthermore, we
assign roles to links and conclude the structure is critical for a better understanding of links. Future work includes
the automatic algorithm to decide the number of clusters and apply our method to real-world datasets.
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