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The ubiquitous nature of networks has led a vast number of works dedicated to the study of capturing their
information. Various graph-based techniques exist that report on the characteristics of nodes and edges, e.g.,
author-citation networks, social interactions, and so on. A significant amount of information can be extracted by
summarizing the surrounding network structure of nodes, e.g., by capturing motives, or walk patterns. In this
work, we present a new way of capturing the interaction between nodes in a network by making use of the sequence
in which they occur. (1) The objective of this paper is to make use of behavioural constraint patterns; a concise
but detailed report of node’s interactions can be constructed that can be used for various purposes. (2) It is shown
how the constraint patterns can be mined form interaction data, and how they can be used for various applications.

1. Introduction

Networks are often formed by the interaction of various

actors. For example, social networks grow based on friend-

ship or interested-based relations, forum posts and emails

link users according to their communication patterns, and

citation networks are formed through authors referencing

peers in their field. Typically, the construction of these

networks is based on either undirected, or directed edges

with weights. Furthermore, many network techniques fo-

cus on static relationships, I.e., the evolution over time

is not investigated. However, a range of new techniques

emerged recently that focus on the time-aspect of a net-

work. Most notably, the use of motifs [Paranjape 17], and

streams [Latapy 18] allow to capture the evolution of a net-

work over time. In this paper, we describe a new approach

based on behavioral constraints, I.e., constraints based on

sequence patterns that allow to describe the order of the

interactions of nodes.

We investigate how they can be constructed from a net-

work dataset, and use the various patterns to describe the

evolution of the network over time. In particular, we apply

the sequence mining method to the question-and-answer

interaction-based network. Our preliminary results show

that profiling network interactions patterns with sequence

mining enables track the behaviour of nodes in a transac-

tional network without relying on the typical partial-order

based results.

This paper is structured as follows. In Section 2, the

methodology is presented to mine constraints from network

data. Next, Section 3 reports on the application on real-life

datasets. Section 4 concludes the paper and reports on the

future directions.

2. Behavioural constraint patterns in
networks

In this section, a detailed overview of the constraints is

given, and how they can be leveraged for various network

analysis applications.

Contact: Johannes De Smedt, The University of Edinburgh,
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2.1 Constraint set
Behavioural constraint templates have been long used in

various areas of computer science. Most notably, a compre-

hensive set of Linear Temporal Logic (LTL) templates was

proposed for the formal verification of program execution

[Dwyer 99]. LTL provides an adequate formalism to search

for various temporal properties, such as whether something

happens eventually, next, and so on, and can be used in

conjunction with typical logical operators to construct ex-

pressive relations. The initial set was extended to include

various other relations, most notably unary ones. While

initially proposed as LTL formulae which are convertible

to Büchi automata, finite trace equivalent regular expres-

sions were introduced in [Di Ciccio 13]. Models allowing

for multiple constraints at the same time can be obtained

by conjoining the automata to obtain a global language or

automaton, over which all constraints hold.

In Table 1, an overview of the most-commonly used con-

straints in literature. They are organized according to 7

different categories, including unary and binary constraints.

Most notably, the binary constraints are exhibit a hierar-

chy which is reported in [Di Ciccio 13] and which covers

unordered up to chain ordered (using the next operator).

Besides, the inclusion of negative constraints is unique, as

typically only existing patterns are reported. Including neg-

ative behaviour can be used to find relations that are not

apparent at first sight, e.g., in Figure 1 , the fact that nodes

A and E are both present in the sequence of C, but do not

have interactions themselves, still allows the inference of

not succession(A,E).

Despite not being useful for capturing interaction effects,

the unary constraints can be used for adding information

to a node’s feature vector in case any exist. I.e., if a par-

ticular node is always occurring first in a sequence, this

might signify a particular pattern, e.g., a person reporting

recently-occurred disasters.

Not every constraint is suitable for binary interaction

within a network context, i.e., not chain succession is, in

general, not suitable for profiling behavior, as it holds in

many situations. Besides, absence is hard to identify un-

less a particular node is scrutinized for this behaviour in

the sequence of another node. Exclusive choice and not co-
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Table 1: An overview of Declare constraint templates with

their corresponding regular expression.

Template Regular Expression

Existence(A,n) .*(A.*){n}
Absence(A,n) [ˆA]*(A?[ˆA]*){n-1}
Exactly(A,n) [ˆA]*(A[ˆA]*){n}
Init(A) (A.*)?
Last(A) .*A
Responded
existence(A,B)

[ˆA]*((A.*B.*) |(B.*A.*))?

Co-existence(A,B) [ˆAB]*((A.*B.*) |(B.*A.*))?
Response(A,B) [ˆA]*(A.*B)*[ˆA]*
Precedence(A,B) [ˆB]*(A.*B)*[ˆB]*
Succession(A,B) [ˆAB]*(A.*B)*[ˆAB]*
Alternate response(A,B) [ˆA]*(A[ˆA]*B[ˆA]*)*
Alternate
precedence(A,B)

[ˆB]*(A[ˆB]*B[ˆB]*)*

Alternate
succession(A,B)

[ˆAB]*(A[ˆAB]*B[ˆAB]*)*

Chain response(A,B) [ˆA]*(AB[ˆA]*)*
Chain precedence(A,B) [ˆB]*(AB[ˆB]*)*
Chain succession(A,B) [ˆAB]*(AB[ˆAB]*)*
Not co-existence(A,B) [ˆAB]*((A[ˆB]*) |(B[ˆA]*))?
Not succession(A,B) [ˆA]*(A[ˆB]*)*
Not chain
succession(A,B)

[ˆA]*(A+[ˆAB][ˆA]*)*A*

Choice(A,B) .*[AB].*
Exclusive choice(A,B) ([ˆB]*A[ˆB]*)

|.*[AB].*([ˆA]*B[ˆA]*)

Figure 1: Running example

existence are similar in this respect, where the latter does

not require the presence of either. Similar to not chain suc-

cession, this might lead to the discovery of many frequently

non-occurring pairs.

2.2 Mining the patterns
We define transactional network data as an ordered set of

interactions T between nodes from the set N , where each

transaction is a tuple (n1, n2, ts) ∈ T with n1 ∈ N the

initiating node, n2 ∈ N the receiving node, and ts ∈ N
+

a timestamp. T can be read sequentially, where each node

n ∈ N has a sequence sn ⊂ 2|N| that is extended whenever a

transaction t ∈ T is for that node is witnessed. I.e., sn gets

extended with 〈n, no〉 whenever n is the initiating node, and

with 〈no, n〉 when n is on the receiving end given another

node no ∈ N .

By using the interesting Behavioural Constraint Miner

[De Smedt 17], we can mine all patterns in a a sequence sn
to obtain a set of constraints Csn . Note, however, that if a

given binary constraint c(n, n2) ∈ Csn holds for n in its own

sequence, this still has to be verified with the sequence of

the other node. If c(n, n2) is not present in that sequence,

the constraints does not hold. Consider for example the in-

teraction in Figure 1. Despite the evidence in the sequence

of A that there exists an alternate succession relationship

between A and B due to the alternating ABABAAB pat-

tern, the sequence of B rather indicates that other occur-

rences of B happen in between (e.g. B→D), breaking the

pattern. Hence, a final step is required to recursively ensure

that Cn = {c | c ∈ Cn ∧ c ∈ Cni∀ni ∈ N (n) ∨ c /∈ Cn ∧ c /∈
Cni∀ni ∈ N (n)} where N (n) ⊆ N denotes the neighbour-

hood of node n to check that all constraint pertaining to n

are either both in its constraint set and the constraint set

of its neighbours to avoid conflict, or that it is present in

an unrelated node (e.g. the connection succession(A,E) in

Figure 1). To conclude the discovery of sequence templates

from the network interactions, the sets Cn are pruned ac-

cording to the constraint hierarchy.

2.3 Applications
The mining of interactions in a network as sequences has

several applications. Most notably, the sequence informa-

tion can be used for analyzing the interactions’ evolution

over time. By tracking what patterns exist, and whether

they return over time gives an overview of how certain rela-

tions change and what the underlying sequential behaviour

is.

Next, the sequence patterns can be used as features of a

node. In this case, also unary constraints help define the

node in terms of where in a sequence, how often, and with

what other nodes the node is interacting. The features can

be used towards node classification [Bhagat 11]. Finally,

by using the transitivity properties of the constraints, link

inference/prediction [Liben 07] can also be made.

3. Results

We apply the sequence method to the Math Overflow

dataset, as used in [Paranjape 17]. On the Overflow web

sites, users post questions and receive answers from other

users, and users may comment on both questions and an-

swers. We derive a transactional network by creating an

edge (u, v, t) if, at time t, user u: (1) posts an answer

to user vs question, (2) comments on user vs question, or

(3) comments on user vs answer. The data contains 24,818

nodes with 506,550 interactions over 2,350 days and deals

with question-and-answer data from users regarding math-

ematical problems.

We retrieve the constraints over the dataset by splitting

the interactions into contingent blocks of a varying time

length. In this case, we used blocks of 4 hours, 2 days, 100

days, and 1,000 days in order to track the evolution of the

constraints. For this analysis, we limit the constraint set to

the 7 most common sequence patterns. In order to illustrate

the usefulness of the results, we focus on two active users

with a different background. The first user (denoted B)

is considered an authority as that node in the network has

the highest authority score [Ding 04]. The high authority is

pointed to by many high hubs and high hub points to many

high authorities. Authority and hub scores are obtained by

this iterative scoring.
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Table 2: An overview of the proportion of constraints that shift from one sequence pattern into another, both for incoming

and outgoing constraints of nodes A and B. The colours denote the place in the distribution, where red is higher and green

lower. Scores with different colours and equal scores indicate a difference in value behind the significant digits.

In Out
4 hours - A 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
NotSuc (1) 0.15 0.04 0.01 0.00 0.02 0.02 0.00 0.01 0.14 0.05 0.05 0.00 0.02 0.02 0.00 0.04
Prec (2) 0.14 0.03 0.02 0.00 0.01 0.01 0.00 0.01 0.13 0.01 0.03 0.00 0.01 0.02 0.00 0.02
AltPrec (3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
ChainPrec (4) 0.03 0.03 0.02 0.00 0.03 0.02 0.00 0.00 0.09 0.02 0.05 0.00 0.02 0.03 0.00 0.04
Resp (5) 0.15 0.02 0.01 0.00 0.01 0.03 0.00 0.01 0.11 0.01 0.00 0.00 0.00 0.03 0.00 0.00
AltRes (6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainRes (7) 0.04 0.05 0.01 0.00 0.01 0.02 0.00 0.04 0.13 0.00 0.02 0.00 0.01 0.02 0.00 0.15
4 hours - B
NotSuc 0.17 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.21 0.02 0.03 0.00 0.01 0.02 0.00 0.01
Prec 0.22 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.19 0.01 0.02 0.00 0.00 0.01 0.00 0.01
AltPrec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainPrec 0.05 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.06 0.01 0.01 0.00 0.00 0.01 0.00 0.01
Resp 0.21 0.02 0.01 0.00 0.00 0.02 0.00 0.01 0.20 0.02 0.01 0.00 0.00 0.02 0.00 0.00
AltRes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainRes 0.07 0.01 0.01 0.00 0.00 0.01 0.00 0.03 0.06 0.01 0.01 0.00 0.00 0.02 0.00 0.02

2 days - A
NotSuc 0.19 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.26 0.01 0.01 0.00 0.00 0.01 0.00 0.00
Prec 0.32 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.24 0.01 0.01 0.00 0.00 0.01 0.00 0.00
AltPrec 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainPrec 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Resp 0.33 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.25 0.01 0.00 0.00 0.00 0.02 0.00 0.00
AltRes 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainRes 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 days - B
NotSuc 0.21 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.23 0.01 0.02 0.00 0.00 0.02 0.00 0.00
Prec 0.29 0.02 0.02 0.00 0.00 0.01 0.00 0.00 0.27 0.02 0.02 0.00 0.00 0.01 0.00 0.00
AltPrec 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainPrec 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Resp 0.29 0.02 0.01 0.00 0.00 0.02 0.00 0.00 0.28 0.02 0.00 0.00 0.00 0.03 0.00 0.00
AltRes 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainRes 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Similar overview as Table 3 containing the 100 and 1,000 days time frames.

In Out
100 days - A 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
NotSuc 0.13 0.02 0.03 0.00 0.00 0.04 0.00 0.00 0.18 0.04 0.04 0.00 0.00 0.04 0.00 0.00
Prec 0.24 0.04 0.07 0.00 0.00 0.02 0.00 0.00 0.19 0.04 0.05 0.00 0.00 0.01 0.00 0.00
AltPrec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainPrec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Resp 0.25 0.04 0.02 0.00 0.00 0.07 0.00 0.00 0.18 0.04 0.01 0.00 0.00 0.04 0.00 0.00
AltRes 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainRes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100 days - B
NotSuc 0.10 0.02 0.04 0.00 0.00 0.05 0.00 0.00 0.15 0.05 0.06 0.00 0.00 0.05 0.00 0.00
Prec 0.19 0.04 0.08 0.00 0.00 0.03 0.00 0.00 0.16 0.05 0.07 0.00 0.00 0.02 0.00 0.00
AltPrec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainPrec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Resp 0.22 0.05 0.02 0.00 0.00 0.11 0.00 0.00 0.13 0.04 0.02 0.00 0.00 0.05 0.00 0.00
AltRes 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainRes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1000 days - A
NotSuc 0.07 0.03 0.06 0.00 0.00 0.07 0.00 0.00 0.11 0.04 0.07 0.00 0.00 0.06 0.00 0.00
Prec 0.14 0.04 0.09 0.00 0.00 0.06 0.00 0.00 0.12 0.06 0.09 0.00 0.00 0.03 0.00 0.00
AltPrec 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainPrec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Resp 0.17 0.06 0.04 0.00 0.00 0.14 0.00 0.00 0.10 0.05 0.04 0.00 0.00 0.07 0.00 0.00
AltRes 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainRes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 days - B
NotSuc 0.01 0.03 0.01 0.00 0.00 0.05 0.00 0.00 0.06 0.02 0.19 0.01 0.00 0.09 0.00 0.00
Prec 0.08 0.06 0.05 0.00 0.00 0.12 0.00 0.00 0.05 0.02 0.23 0.01 0.00 0.03 0.00 0.00
AltPrec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainPrec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Resp 0.14 0.10 0.04 0.00 0.00 0.29 0.01 0.00 0.02 0.01 0.05 0.00 0.00 0.05 0.00 0.00
AltRes 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChainRes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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The other user (denoted A) has a similarly high degree

(high number of connections in the network), but a lower

authority score. Our hypothesis is that the interactions of

the authority user result in several constraint patterns as

he gains the authority through answering and commenting

to questions within his expertise.

The results of the shifts in constraint patterns as ex-

pressed in their proportions, are included in Tables 2 and 3

for both incoming and outgoing constraints of both nodes.

The cells indicate the proportion of connections between

the same nodes that are both present again in two subse-

quent time frames that shifted from the template in the

rows, to the template in the columns. ‘0’ signifies that the

constraint is no longer present between both rows.

Firstly, it can be seen that there is a high number of con-

straints that are not reoccurring over time, meaning they

are not repeated in the subsequent time frame. This be-

haviour is expected, given that many question-answering

threads stop after a few posts, and many users only tend

to intervene in a limited number of threads. Considering

different lengths of time frames, however, we note that es-

pecially for node B (the authority) the number of vanishing

interactions is drastically lower for 1,000 days. In case of

incoming constraints, we see many re-occurring response

constraints, and with outgoing ones we see many prece-

dence and not succession constraints appearing. This is in

line with how we would expect question-answering is han-

dled by an authority, who responds to all questions within

his area of expertise.

Overall, the two nodes behave relatively similarly in

terms of proportions of constraints up until the 1,000 days

threshold. The change incurred by increasing the time

frames does not yield drastically different results, but it can

be noted that more connections are reoccurring (mostly re-

sponse and precedence relationships) rather than vanishing

(as captured by column ‘0’). Hence, nodes that are sur-

viving longer, and hence are reoccurring themselves, seem

to maintain their relations over time. Also, any ’stronger’

constraints that model alternating or chain relations are

very often not present. One final observation is interest-

ing. The high number of chain response connections that

are going out from node A indicates that many immediate

answer-response messages were exchanged over a period of

4 hours, indicating that single conversations where picked

up of which many reoccurred as well.

4. Conclusion and future work

In this paper, we have shown how mining network in-

teraction patterns can be profiled using sequence mining

techniques. We apply the sequence mining method to the

question-and-answer interaction-based network. Our pre-

liminary results show that employing sequence patterns en-

ables us track the behaviour of nodes in a transactional

network and summarize their interactions without relying

on the typical partial-order based results that are offered in

sequence mining, while still going beyond the typical gen-

eral nature of motifs that focus on directed arcs between 2

or 3 actors [Paranjape 17] . In a small experimental evalu-

ation, we demonstrate the usefulness of the approach in the

context of message board analysis.

For future work, we envision to focus on testing the pat-

terns in the context of feature engineering, and link infer-

ence.
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