複合現実によるロボットの空間認識可視化のための Semantic-ICPを用いたキャリブレーション

Calibration System Using Semantic-ICP for Visualization of Robot Spatial Perception Through Mixed Reality

> 中村仁 Hitoshi Nakamura

エルハフィロトフィ Lotfi El Hafi 萩原良信 Yoshinobu Hagiwara 谷口忠大 Taniguchi Tadahiro

立命館大学

Ritsumeikan University

To achieve symbiosis between humans and robots, it is important to know what the robots recognize in their environment. Such information can be displayed using a Mixed Reality (MR) head-mounted device to provide an intuitive understanding of a robot perception. However, a robust calibration system is required because the robot and head-mounted MR device have different coordinate systems. In this paper, we develop a semantic-based calibration system for human-robot interactions in MR using Semantic-ICP. We show that the calibration system using Semantic-ICP is better than using GICP SE(3) when the accuracy of the semantic labels is high.

1. はじめに

家庭環境内で人間と共同で動作するロボットが, ヘッドマ ウントディスプレイを介して人間とインタラクションを行う 場合, ロボットとデバイス間のキャリブレーションが必要であ る. 近年, 複合現実や拡張現実を用いたロボットの内部表現の 可視化や, それらの情報を元にした追加学習を行う研究が行わ れている [Collett 06,Liu 18]. このような研究においてロボッ トとヘッドマウントディスプレイが異なる座標系を持っている 場合, キャリブレーションを行わなければロボット自身の座標 系に基づいた内部表現をヘッドマウントディスプレイの座標系 に基づいた現実空間の該当する位置に可視化することが出来 ない.

既存手法の多くでは AR マーカを用いてキャリブレーショ ンを行う手法が用いられてきた [Liu 18]. しかし, AR マーカ を用いる場合は, AR マーカが設置された範囲内でしかキャリ ブレーションを行うことができないため,環境内に多数の AR マーカを配置する必要があり,またそれには手間がかかる.こ の問題を解決するためには,ロボットとヘッドマウントディス プレイのそれぞれから得られる Point Cloud を用いたキャリ ブレーションが利用できる.しかしながら,両デバイス間にお ける Point Cloud の取得方法が異なっている場合,正確なキャ リブレーションは困難である.

そこで本研究では、より正確な位置にロボットの内部表現 を描画するために、Point Cloud に画像特徴量としてセマン ティックラベルの確率分布を付加したものをキャリブレーショ ンに用いる手法を提案する.図1に、2.4節で詳しく述べる Semantic-ICPを用いたロボットとヘッドマウントディスプレ イにおけるキャリブレーション手法の図を示す.

2. 関連研究

2.1 キャリブレーション手法

Liu らは、ロボットの関節上にマーカを描画する際に、ロ ボットの正確な位置を認識するために AR マーカを使用して いた [Liu 18]. この研究では、ヘッドマウントディスプレイを 装着した人間は常にロボットを見ているため、ロボットに搭載

図 1: Semantic-ICP を用いたロボットとヘッドマウントディ スプレイ間のキャリブレーション

されたディスプレイ上に AR マーカを表示することによって キャリブレーションを行っていた. AR マーカを用いたキャリ ブレーション手法ではロボットが移動したり人間が移動したり して AR マーカを捕捉できなくなった場合,キャリブレーショ ン誤差が発生してしまう.また人間が誤差を軽減するために何 度もタグを見て再キャリブレーションを行う必要があるという 欠点がある.

本研究ではこれらの欠点を踏まえ、人間のキャリブレーショ ンに関わる作業コストを削減し、誤差の少ないキャリブレー ションを実現するために、互いの Point Cloud を用いた自動 でキャリブレーションを行う手法を提案する.

2.2 ICP と Generalized-ICP

二つの Point Cloud をマッチングする手法として Iterative Closest Point (ICP) [Besl 92] がよく用いられる.また, Segal らは ICP を応用し,確率的なモデルを使った Generalized-ICP (G-ICP) を提案した [Segal 09]. ICP, G-ICP は大きく分け て以下の 3 つのステップで処理が行われる.

STEP 1 X_t, X_sの対応関係 I を計算する

- STEP 2 最適な変換行列 T* を求める
- **STEP 3** 前サイクルの最適な変換行列 **T^{old}** と **T**^{*} を比較し, その誤差が *ϵ* より小さければ終了する

ただし, $\mathbf{X}_t = \left\{ \mathbf{x}_1^t, \mathbf{x}_2^t \dots \mathbf{x}_n^t \right\}$, $\mathbf{X}_s = \left\{ \mathbf{x}_1^s, \mathbf{x}_2^s \dots \mathbf{x}_n^s \right\}$ を Point Cloud 集合, I を二つの Point Cloud の対応関係集合,

連絡先: 中村 仁, 立命館大学情報理工学研究科, 滋賀県草津市 野路東 1-1-1, nakamura.hitoshi@em.ci.ritsumei.ac.jp

Tを二つの Point Cloud 間の変換行列, ϵ を変換行列後の二 つの Point Cloud 間の許容する誤差とする.まず STEP 1 に おいて **X**_t, **X**_s 内の点一つ一つの対応関係を計算する.最近傍 探索手法によって式 (1)を用いることによって最も近い点を探 索する.関数 *d* は **x**^t_i(\in **x**_t)と一番近い距離にある点 **x**^s_i(\in **x**_s) を取得するものである.式 (1) によって **x**_t と **x**_s の全ての点 の対応を求めたものの集合が I である.

$$d(\mathbf{x}_{i}^{t}, \mathbf{X}_{s}) = \min_{\mathbf{x}_{i}^{s} \in \mathbf{x}_{s}} \|\mathbf{x}_{i}^{s} - \mathbf{x}_{i}^{t}\|$$
(1)

STEP 2 では最適な変換行列を求める計算を行う. ここでの 変換行列は $\mathbf{T} = \mathbf{Rx}_{i}^{t} + \mathbf{p}$ と表される. ここで, \mathbf{R} はユークリッ ド空間での回転行列, \mathbf{p} は並進ベクトルを表している. \mathbf{x}_{s} を固 定して \mathbf{x}_{t} の中から \mathbf{x}_{i}^{t} を取得し, その点 \mathbf{x}_{i}^{t} を \mathbf{R} によって回転 させ, \mathbf{p} によって平行移動を行う. ICP の場合, 式 (2)を用いて 最適な変換行列を求める. ここで ω_{i} は, $\|\mathbf{x}_{i}^{t} - \mathbf{T} \cdot \mathbf{x}_{i}^{s}\| \leq \mathbf{d}_{\max}$ を満たす時に $\omega_{i} = 1$ を, それ以外は $\omega_{i} = 0$ を取る変数であ る. また, d_{max} は, 計測誤差によるマッチング精度が減少す るのを防ぐパラメータである. 対応付けられた 2 つの点の距 離が d_{max} 以上であった場合, 計測誤差として計算対象外とす るためである.

$$\mathbf{T}^* \Leftarrow \operatorname{argmin}_{\mathbf{T}} \sum_{\mathbf{i}} \omega_{\mathbf{i}} \| \mathbf{T} \cdot \mathbf{x}_{\mathbf{i}}^{\mathbf{s}} - \mathbf{x}_{\mathbf{i}}^{\mathbf{t}} \|^2$$
(2)

2.3 GICP-SE(3)

Parkison らは G-ICP を Absil らの手法 [Absil 08] を参考に して特殊ユークリッド群 (SE(3)) に適応させた GICP-SE(3) を提案した [Parkison 18]. G-ICP との違いとして最適な変 換行列を求める式が f_{GICP} に変更されている. ここで C_k は $C_k \triangleq \sum_{k}^{t} + R \sum_{k}^{s} R^T$ と表される. $\sum_{k}^{t} \sum_{k}^{s}$ は各 Point Cloud が正規分布から得られていると仮定した際の分散である. また f_{GICP} は式 (3) である. ここで P_{α} 関数はコーシー損失関数で あり, $P_{\alpha}(x) = \alpha^2 log(1 + \frac{x}{\alpha^2})$ とする. また, α は損失が直線 的に減少し始める場所を制御するパラメータ, n はマッチング 対象の点の数である. また, 式 (3) 内の変換行列 **T** \in **SE**(3) は式 (4) で示される.

$$\mathbf{T}^{*} \leftarrow argmax_{\mathbf{T}\in\mathbf{SE}(\mathbf{3})}f_{GICP}$$
$$f_{GICP} = \sum_{k}^{n} p_{\alpha}(\|\mathbf{x}_{k}^{t} - \mathbf{T}(\mathbf{x}_{k}^{s})\|_{\mathbf{C}_{k}}^{2}) \qquad (3)$$

$$\mathbf{T} \in \mathbf{SE}(\mathbf{3}) = \begin{pmatrix} \mathbf{R} & \mathbf{p} \\ 0 & 1 \end{pmatrix}$$
(4)

2.4 Semantic-ICP

Parkison らは GICP-SE(3) にセマンティックラベルの確率分 布を付加した Semantic-ICP を提案した [Parkison 18]. GICP-SE(3) と異なる点として,式(3) に示した関数 F_{GICP} に,式 (5) によって得られる重み $\omega_{\mathbf{k}}$ を新たなパラメータとして加え た関数 F_{SICP} を用いている点である.

$$\omega_{\mathbf{k}} \triangleq \sum_{\mathbf{s}_{\mathbf{k}} \in \mathbf{C}} p(\mathbf{r}_{\mathbf{k}} | \mathbf{i}_{\mathbf{k}}, \mathbf{x}_{\mathbf{k}}^{\mathbf{t}}, \mathbf{X}_{\mathbf{k}}^{\mathbf{s}}; \mathbf{T}^{\mathbf{old}}) \mathbf{p}(\mathbf{s}_{\mathbf{k}} | \mathbf{i}_{\mathbf{k}}, \mathbf{x}_{\mathbf{t}})$$

$$p(\mathbf{s}_{\mathbf{k}} | \mathbf{i}_{\mathbf{k}}, \mathbf{x}_{\mathbf{s}}) \mathbf{p}(\mathbf{i}_{\mathbf{k}} | \mathbf{x}_{\mathbf{k}}^{\mathbf{t}}, \mathbf{x}_{\mathbf{k}}^{\mathbf{s}}) \tag{5}$$

式 (5) は式 (6) の式より導かれている. *F*_{SICP} を式 (7) の ように表す. 式 (6) は二つの Point Cloud が与えられた時の それらの対応関係,セマンティックラベル情報,変換行列のパ ラメータが得られる条件付き確率はベイズ則を用いて右辺のよ うに近似できることを示している.ここで, R は T の残差パ ラメータ, C をセマンティックラベル集合, S を環境内にある セマンティックラベル集合, N をセマンティックラベルの数と する.

$$p(\mathcal{R}, \mathbf{S}, \mathbf{I} | \mathbf{X}_{t}, \mathbf{X}_{s}) \propto p(\mathcal{R} | \mathbf{I}, \mathbf{X}_{t}, \mathbf{X}_{s}) \mathbf{p}(\mathbf{S} | \mathbf{I}, \mathbf{X}_{t}) \quad (6)$$

$$p(\mathbf{S} | \mathbf{I}, \mathbf{X}_{s}) \mathbf{p}(\mathbf{I} | \mathbf{X}_{t}, \mathbf{X}_{s})$$

$$\mathbf{T}^{*} \leftarrow argmax_{\mathbf{T} \in \mathbf{SE}(3)} f_{SICP}$$

$$f_{SICP} = \sum_{n \neq N}^{n \neq N} p_{\alpha}(\omega_{k} \| \mathbf{x}_{t}^{t} - \mathbf{T}(\mathbf{x}_{t}^{s}) \|_{\mathbf{C}}^{2}) \quad (7)$$

$$\tilde{\mathbf{x}}$$
 (5) でのセマンティックラベルごとの Point Cloud

また,式 (5) でのセマンティックラベルごとの Point Cloud の対応関係 $\mathbf{i}_{\mathbf{k}}$ の条件付き確率 $p(\mathbf{i}_{\mathbf{k}}|\mathbf{x}_{\mathbf{k}}^{t},\mathbf{x}_{\mathbf{k}}^{s})$ は式 (8) によっ て示される. ここで $nn(x_{k}^{t})$ は x_{k}^{t} の x_{k}^{s} 内にある近傍点の数 を求める関数である.本研究では図 1 に示したように,この Semantic-ICP を用いて実験を行う.

$$p(\mathbf{i}_{\mathbf{k}}|\mathbf{x}_{\mathbf{k}}^{\mathbf{t}}, \mathbf{x}_{\mathbf{k}}^{\mathbf{s}}) \triangleq \begin{cases} \frac{1}{N} & if \ nn(\mathbf{x}_{\mathbf{k}}^{\mathbf{t}}) = \mathbf{N} \\ 0 & otherwise \end{cases}$$
(8)

3. 提案手法

3.1 概要

Point Cloud を用いたキャリブレーションとして、一般的に ICP がよく用いられる.しかしながら、本研究ではヘッドマ ウントディスプレイとロボットが異なるセンサーを用いて異な る手法で Point Cloud を取得している為、一般的な ICP では 良い結果が得られないと考えられる.そのため、本研究では、 ヘッドマウントディスプレイとロボットのキャリブレーション を、互いのカメラセンサから得られる Point Cloud に画像特 徴量として得られるセマンティックラベルの確率分布を付加し たものを用いてキャリブレーションする手法を提案する.セ マンティックラベルとは、画像内に含まれるオブジェクトの名 前のことである.ここで、セマンティックラベルの確率分布を 付加した Point Cloud を Semantic Point Cloud と定義する. Semantic Point Cloud は以下の 3 つのステップによって生成 する.また提案手法では CNN として PSPNet [Zhao 17] を用 いる.

- **STEP 1** RGB-D カメラを使用して Point Cloud, RGB 画 像を取得する
- **STEP 2** RGB 画像を PSPNet を用いてセマンティックセグ メンテーションを行いピクセルごとにセマンティックラ ベルの確率分布を取得する
- **STEP 3** STEP 1,2 で得られたピクセルごとのセマンティッ クラベルの確率分布から得られる最も生成確率の高いセマ ンティックラベルを Point Cloud を対応させ, Semantic Point Cloud を生成する

3.2 ロボット側の Semantic Point Cloud の生成手法 本手法では、ロボットは環境内全体の地図を Semantic Point

本手法では、ロボットは環境内全体の地図を Semantic Point Cloud として保有しているものとする.本手法ではロボットの Semantic Point Cloud を用いた 3D の地図作成に Semantic SLAM [Zhang 18] を改変して用いた. Semantic SLAM に用 いられている RGB-D カメラの位置情報を把握するために用い られている ORB-SLAM を用いずに,ロボットの標準機能と して取得できる RGB-D カメラの位置情報をそのまま用いる. ORB-SLAM よりもより精度の高い位置情報が得られるためで ある.また本手法では 3D 地図の作成に Octomap [Hornung 13] を用いた. Octomap で得られたボクセルマップを, Semantic Point Cloud 形式に変換することによって,環境内の Semantic Point Cloud の 3D の地図を作成することができる. ここで 環境内の Semantic Point Cloud の 3D の地図のことを 3D Semantic Map と定義する.

3.3 ヘッドマウントディスプレイ側の Semantic Point Cloud の生成手法

本手法で用いるヘッドマウントディスプレイとして HoloLens を用いる. HoloLens は RGB 画像は取得できるが, Point Cloud を取得することが出来ないため,以下の4つのステッ プによって Point Cloud を取得する.

STEP 1 RGB 画像を撮影する

- STEP 2 各ピクセルごとにカメラ間のベクトルを生成する
- **STEP 3** 各ベクトルをカメラが向いている方向に延長し, Spatial Mapping に接触した場合,そのベクトルの長さをそ のピクセルの深度として取得する
- **STEP 4** そのピクセルの座標と深度を用いて Point Cloud と する

以上の4ステップの後,得られた Point Cloud を 3D Semantic Map 作成に用いた同様の PSPNet のモデルを使用して最も生 成確率が高いセマンティックラベルを付加した Semantic Point Cloud を生成する.

3.4 Semantic-ICP を用いたマッチング

ロボットによって得られる 3D の地図データの Semantic Point Cloud と HoloLens が現在見ている部分の Semantic Point Cloud を Semantic-ICP を使ってマッチングさせるこ とによってキャリブレーションを行う. Semantic Point Cloud の照合によって,互いの Semantic Point Cloud 間における最 適な変換行列がわかり,同時に互いの座標系間における座標 系変換を推定することが可能となる.本研究では 2.2 節で示 した変数 $\mathbf{X}_{\mathbf{t}}$ をロボットの 3D Semantic Map, $\mathbf{X}_{\mathbf{s}}$ をヘッド マウントディスプレイの Semantic Point Cloud, \mathbf{S} を互いの Point Cloud 内に存在するセマンティックラベルとして考える. 式 (6) で示した重み $\omega_{\mathbf{k}}$ の $p(\mathbf{s}_{\mathbf{k}}|\mathbf{i}_{\mathbf{k}},\mathbf{x}_{\mathbf{s}})$ は CNN から得られるセマンティックラベルごとの生成確率を扱うが, 本研究では各 Point Cloud ごとに一番生成確率が高かったラ ベルの確率を 1, それ以外のラベルの確率を 0 にして重み ω_k を計算する.

4. 実験

4.1 概要

本研究では、家庭環境を模した環境で、Semantic-ICP を用 いたロボットとヘッドマウントディスプレイ間のキャリブレー ションを行う実験を行う.

図 2: 実験で用いた環境の画像

4.2 実験条件

本実験では家庭環境を模した実環境で実験を行う.またロ ボットとしてトヨタ自動車株式会社の Human Support Robot (HSR), ヘッドマウントディスプレイとして Microsoft 社の HoloLens を使用する.ロボットは家庭環境内の 3D の地図 データを事前に保持しているものとし,その地図データの原点 がわかっているものとする.また,ヘッドマウントディスプレ イは装着者が向いている方向の Point Cloud を取得すること ができるものとする.ロボットの座標系が右手系であり,ヘッ ドマウントディスプレイの座標系が左手系であることも既知と する.

4.3 本実験の目的

既存手法として,Point Cloud のマッチング手法としてよく 用いられている GICP-SE(3) を用いたキャリブレーションと, 提案手法である Semantic-ICP キャリブレーション同士の精度 の比較を行い,提案手法の妥当性を評価する.ここでのキャリ ブレーションの精度とは,互いの Point Cloud をマッチングさ せる際に得られた最適な変換行列 $\mathbf{T}^* \in \mathbf{SE}(3)$ の精度である.

4.4 実験方法

はじめに,実験データ作成のために,HSR を用いて家庭環 境の 3D Semantic Map を作成する.その後 HoloLens を用い て家庭環境内の四箇所 (テレビ前,作業机,本棚前,ダイニン グ)で Semantic point cloud の取得を行う.図 2 に四箇所の 実際の環境を示す.

これら四箇所の場所で得られた 3D Semantic Map と Semantic point cloud を用いて GICP-SE(3) と Semantic-ICP を実行し、キャリブレーション精度の比較を行う.またグランドトゥルースとして、HoloLens の座標系と HSR の座標系の 3 次元距離をメジャーで測定し取得する.グランドトゥルースと 各キャリブレーション手法の精度の比較として、Parkison らが Semantic-ICP の評価の際に使用した変換行列 ($\mathbf{T} \in \mathbf{SE(3)}$) 誤差を用いる.ここで $\mathbf{T_{GT}}$ はグランドトゥルースの変換行列 を、d は誤差を計算する関数を表す.またこれら 3 項目の定義 を式 (9) に示す.

 $d_{SE(3)}(\mathbf{T}^*; \mathbf{T}_{\mathbf{GT}})) \triangleq \|\log(\mathbf{T}^*\mathbf{T}_{\mathbf{GT}})^{-1})\| \qquad (9)$

4.5 実験結果

HoloLens と HSR の Semantic Point Cloud を Semantic-ICP と GICP-SE(3) でそれぞれマッチングした結果を表1に 示す.なお,表に示された数値は全て小数第三位を四捨五入し たものである.また二つの手法の結果を比較し,誤差が小さ い方の数値を太字で示す.作業机とダイニングでは Semantic-ICP の方が変換行列誤差が既存手法より小さく,精度の向上が 認められた.本棚前とテレビ前では,GICP-SE(3)と比較し, Semantic-ICP の方が大きな誤差が得られた.

5. 考察

精度の悪かったテレビ前と本棚前の HoloLens と HSR の Semantic Point Cloud を図 3, 図 4 に示す.図 3a と図 3b を 比較すると、テレビの前のテーブルで異なったラベルが貼られ ていることがわかる.同様に、本棚前でも、図 4a と図 4b を 比較すると本棚に異なったラベルが張られている.よって、作 業机とダイニングにおいてマッチングの精度が向上し、作業机 と本棚前では精度の低下したことから、HSR と HoloLens で 得られたセマンティックラベルが異なっている領域が大きい時 に精度が下がると考えられる.

図 3: テレビ前の Semantic Point Cloud

(a) HoloLens

(b) HSR

図 4: 本棚前の Semantic Point Cloud

6. おわりに

本研究では、ロボットやヘッドマウントディスプレイのキャ リブレーションを、AR マーカを用いずにキャリブレーション 精度を向上させる手法として Semantic-ICP を用いた.本実験

表	1:	変換行列誤差	$d_{SE(3)}$
---	----	--------	-------------

キャリブレーシ ョン手法	テレビ前	作業机	本棚前	ダイニング
GICP-SE(3)	0.22	5.42	0.08	0.06
Semantic-ICP	8.68	0.05	0.76	0.04

では HoloLens と HSR のカメラから取得した Point Cloud に PSPNet の出力値のセマンティックラベルを付加した Semantic Point Cloud を用いてマッチングを行った. GICP-SE(3), Semantic-ICP のキャリブレーション精度の比較を行った. 実 験の結果,互いの Semantic Point Cloud 内の一致しているセ マンティックラベルの領域が広い場合,精度が向上する傾向に あることがわかった.今後の展望としては,各ラベルの生成 確率を扱う手法の改善や,セマンティックラベル以外の特徴量 を用いた場合に精度の向上が見られるかの検証を行う予定で ある.

参考文献

- [Collett 06] T.H.J Collett and B.A MacDonald, "Augmented reality visualisation for player", In Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA), 2006, pp.3954-3959
- [Liu 18] Hangxin Liu, Yaofang Zhang, Wenwen Si, Xu Xie, Yixin Zhu, and Song-Chun Zhu, "Interactive Robot Knowledge Patching Using Augmented Reality", In Proceedings 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp.1947-1954
- [Besl 92] P.J. Besl and Neil D. McKay, "A method for registration of 3-D shapes", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.14, No.2, 1992, pp.239-256
- [Segal 09] Aleksandr V Segal, Dirk Haehnel, and Sebastian Thrun, "Generalized-ICP", Robotics:Science and Systems 2009, Vol.2, 2009
- [Absil 08] P.-A. Absil, R Mahony, and R Sepulchre, "Optimization Algorithms on Matrix Manifolds", Princeton University Press, Princeton, NJ, 2008
- [Parkison 18] Steven A. Parkison, Lu Gan, Maani Ghaffari Jadidi, and Ryan M. Eustice, "Semantic Iterative Closest Point through Expectation-Maximization", Proceedings of the British Machine Vision Conference, 2018, pp.1-17
- [Zhao 17] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia, "Pyramid Scene Parsing Network", In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.6230-6239
- [Zhang 18] Xuan Zhang, "Real-time voxel based 3d semantic mapping with a hand held rgb-d camera", https://github.com/floatlazer/semantic_slam, Accessed:2019-01-02
- [Hornung 13] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard, "OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees", Autonomous Robots, 2013