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Recently, robots are introduced to warehouses and factories for automation and are expected to execute dual
arm manipulation as human does. We focus on target picking task in the cluttered environment and aim to realize
a robot picking system which the robot selects and executes proper grasping motion from single-arm and dual-arm
motion. In this paper, we propose a self-supervised learning based target picking system with selective dual-arm
grasping. In our system, a robot first learns how to grasp and how to distinguish items with synthesized dataset.
The robot then executes and collects grasp trial experiences in the real world and retrains grasping model with
the collected trial experiences. Finally, We also propose the learning based target picking system with selective
dual-arm grasping and evaluate picking task experiments in the cluttered environment such as warehouse.
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4.2 Mask-RCNN
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Graspable category Object names

Single-arm graspable DVD, Toilet brush, Brown sponges

Dual-arm graspable White binder, Green notebook

Both graspable Ice cube tray, White socks,

Aluminum foil, Pink table cloth

7.2 Mask-RCNN
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2: Mask-RCNN

Model mAP mSQ mRQ mPQ

Trained with 0.491 0.503 0.449 0.240

synthesized dataset (Ours)

Trained with 0.606 0.499 0.329 0.169

human annotated dataset
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Single-arm Dual-arm Total

success success success

Before 32 15 47

retraining (68.1%) (34.9%) (52.2%)

After 65 11 76

retraining (91.5%) (57.9%) (84.4%)

7.3.2
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Success Item Mis- Mis- Obstacle Total

drop recognition grasp removal

failure

11 1 2 1 2 18

(61.1%) (5.6%) (11.1%) (5.6%) (11.1%)
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