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Sequence-to-sequence models are widely used to implement a chatbot. One of their advantages is that a chatbot
can be trained in an end-to-end manner. On the other hand, its disadvantage is that a process of response generation
is completely black-box. To solve this problem, interpretable response generation mechanism is desired. As a step
forward in this direction, we focus on dialogue-acts and propose a method to predict a dialogue-act of the next
response based on conversational history. Specifically, we consider both histories of utterances and their dialogue
acts. Experiment results using the Switch Board Dialogue Act corpus show that our method achieves 8.6%and
1.2% higher F-score and accuracy on predicting responses dialogue-acts, respectively, compared to a previous
method that only considers the utterance history.
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