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In this paper, we propose to use self-training for chemical named entity recognition. We first train a neural
network-based model for chemical named entity recognition model using the CHEMDNER corpus. The trained
model is used to annotate the unlabelled MEDLINE corpus to create automatically labelled training data. We
then use both training data, manually labelled CHEMDNER corpus and automatically labelled MEDLINE corpus,
to train our final model. The evaluation using the unlabelled MEDLINE corpus as training data showed that the
effectiveness of self-training in the chemical named entity recognition task.
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1:

1: CHEMDNER

3,500 3,500 3,000 10,000

4,883,753 4,864,558 4,199,068 13,947,379

770,855 766,331 662,571 2,199,757

TRIVIAL 8,832 8,970 7,808 25,610

SYSTEMATIC 6,656 6,816 5,666 19,138

ABBREVIATION 4,538 4,521 4059 13,118

FORMULA 4,448 4,137 3,443 12,028

FAMILY 4,090 4,223 3,622 11,935

IDENTIFIER 672 639 513 1,824

MULTIPLE 202 188 199 589

NO CLASS 40 32 41 113
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3:

F

0 0.866 0.787 0.824

50 0.879 0.789 0.832

100 0.870 0.808 0.838

150 0.860 0.812 0.838

200 0.867 0.812 0.839
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400 0.875 0.801 0.836

450 0.883 0.804 0.842

500 0.860 0.822 0.841

550 0.883 0.804 0.837
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