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Human experts segment cell images manually now, and the criterion for segmentation varies on each expert. As a result, 
subjective results are obtained. If we develop an automatic segmentation method, we can obtain objective results by the same 
criteria.  This paper proposes a cell image segmentation method using Generative Adversarial Network (GAN) with multiple 
different roles. The proposed method improved the segmentation accuracy in comparison to conventional pix2pix. 
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2.  

method Membrane[%] Nucleus[%] Background[%] mIoU[%]

w/o Background & Overlap 36.61 58.74 70.54 55.30
w/o Background 37.13 59.62 70.43 55.73

w/o Overlap 36.28 61.18 70.38 55.95
Proposed method (Full model) 37.92 60.12 70.58 56.21

w/o Overlap 38.60 59.26 69.53 55.80
Proposed method (Full model) 38.83 58.77 70.06 55.89

1. Comparison of DDR-GAN

2. Comparison of TDR-GAN

Method Membrane[%] Nucleus[%] Background[%] mIoU[%]
pix2pix 36.67 57.99 67.98 54.21

DDR-GAN 37.92 60.12 70.58 56.21
TDR-GAN 38.83 58.77 70.06 55.89
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