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Hierarchical reinforcement learning, especially which learn policy with option discovery simultaneously, needs a
lot of iterations. This paper investigates how human sub-goal transfer affect to learning speed and performance. we
proposes the way to transfer human sub-goals in hierarchical reinforcement learning. To acquire human sub-goal
knowledge, we use the problem in interactive machine learning. Supervised learning transforms human sub-goals
into initial parameters before learning on hierarchical reinforcement learning. Two experiments, participant experi-
ment and evaluation experiment, are conducted. The participant experiment is to acquire sub-goals of participants.
The human sub-goal transfer is evaluated on learning speed and performance after learning in evaluation experi-
ment. The future work is to conduct two experiments and analyze the results.
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Algorithm 1 Human sub-goal transfer

Ensure: βϑ,∗(s)
repeat

s ← s0
Choose ω according to πω

repeat

Choose a according to π in ω

Take a in s, observe s′, r
Receive sg from human trainer

Sg ← Sg ∪ sg
Update Qω, πθ, βϑ

if βω,ϑ terminates in s′ then
Choose ω according to πω

end if

s ← s′

until termination

until predefined number of iterations

while ω ∈ Ω do

while sg ∈ Sg do

ϑ ← ϑ− αg (1− βω,ϑ(sg))
∂βω,ϑ(sg)

∂ϑ

end while

end while
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