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The bullwhip effect is known as one of the problems in the supply chain. As a result of demand forecasting
and decision-making, demand propagates from downstream to upstream while amplifying. This phenomenon is
well reproduced by the Beer Game invented in the 1960 s. On the other hand, in online shopping, there is a
gap between the information-flow in cyberspace and the object-flow in physical space. This gap can be a factor to
promote the bullwhip effect , but it is difficult to reproduced with the original Beer Game. Therefore, we set up
the new game called Netshop Game which extended the rules and the environment. On the new game, by using
deep reinforcement learning, we are able to reproduce the local optimum that can occur in net shopping supply
chain, and confirmed that it is effective for discovering a global optimum by introducing a meta viewpoint.
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Listing 1: Netshop Game Algorithm

1 procedure DQN

2 for episode = 1 : n do

3 reset environment

4 for t = 1 : T do

5

at =

{
take random action prob. ε

argmina Q(st, a, θ)(otherwise)

6 observe reward rt and state st+1

7 mini-batch (sj , aj , rj , sj+1)
8

yj =

{
rj (goal)

rj +min(Q(s, a, θ)) (otherwise)

9 loss function (yj −Q(sj , aj , θ))
2

10 end for

11 end for

12 end procedure
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1: (100 episodes )

player steps BEI FR rewards

CYBER 182.5200 1.0658 0.9562 1051.5985

PHYSICAL 171.4000 0.8388 0.9083 982.1282

META 369.4100 0.7025 0.9471 649.0225
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