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Capsule Network is a new neural network proposed to overcome the shortcomings of CNN. However, the Capsule
Network has many learnable parameters and is prone to over-fitting. In this research, we aim to improve general-
ization ability by reducing parameters using L1 regularization. We evaluate our method by comparing the accuracy
and the reconstructed image with the conventional method.
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Algorithm 1 Routing algorithm

procedure routing(ûj|i,r,l)
for all capsule i in layer l and capsule j in layer(l + 1):bij ← 0

for r iterations do

for all capsule i in layer l : ci ← softmax(bi)

for all capsule j in layer (l + 1) : sj ← cijûj|i
for all capsule i in layer (l + 1) : vj ← squash(sj)

for all capsule i in layer l and capsule j in layer (l + 1) : bij ← bij + ûj|i · vj

end for

return vj

end procedure

3: 16 MNIST fashion MNIST SVHN

1: (CapsNet) (L1)

Dataset Original Deformed

Network CapsNet L1 CapsNet L1

MNIST 99.13 99.30 91.37 93.10

fashion MNIST 88.29 90.49 61.57 62.27

SVHN 91.91 93.29 70.86 74.17

2:
Sparsity[%]

MNIST 68.57

fashion MNIST 62.90

SVHN 68.01
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