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Recent advancements in computer-assisted learning systems have increased research in the area of knowledge
tracing, which estimates student proficiency based on their past performance. In this context, deep learning-based
methods, such as Deep Knowledge Tracing (DKT), show remarkable performance; however, existing methods do not
consider latent knowledge structure. This limits not only the prediction performance but also the interpretability
and validity of models’ prediction, which prevents the application to real educational environments. In this paper,
we propose a graph-based knowledge tracing model, Graph Knowledge Tracing (GKT). Representing the knowledge
structure as a graph, we model students’ time-series mastery to each skill using Graph Neural Networks. We consider
two problem settings, one is to exploit the pre-defined graph structure and the other is to learn the implicit graph
structure from data, and provided two models to deal with them. Using two open datasets, we empirically validated
that our method shows higher prediction performance and more interpretable and valid prediction compared to
the previous methods. These results show the potential of our proposed method to enhance the performance
and the application to real educational environments of knowledge tracing, which could help improve the learning
experience of students in more diverse environments.
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1:

ASSISTments 1,000 101 62,955

KDDCup 1,000 211 98,200

2:

AUC

ASSISTments KDDCup

DKT 0.709 0.751
DKVMN 0.710 0.753

EGKT
DKT 0.723 0.764

0.721 0.769

0.722 0.762

IGKT
PAM 0.719 0.762
MHA 0.723 0.766
VAE 0.722 0.769
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38(Histogram as Table or Graph) 78(Scatter Plot)
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