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Recently, there is an increasing interest in obtaining the relational structures of the environment in the Reinforcement Learning
community. However, the resulting “relations” are not the discrete, logical predicates compatible to the symbolic reasoning
such as classical planning or goal recognition. Meanwhile, Latplan [Asai 18] bridged the gap between deep-learning perceptual
systems and symbolic classical planners. One key component of the system is a Neural Network called State AutoEncoder (SAE),
which encodes an image-based input into a propositional representation compatible to classical planning. To get the best of both
worlds, we propose First-Order State AutoEncoder, an unsupervised architecture for grounding the first-order logic predicates.
Each predicate models a relationship between objects by taking the interpretable arguments and returning a propositional value. In
the experiment using 8-Puzzle and a photo-realistic Blocksworld environment, we show that (1) the resulting predicates capture
the interpretable relations (e.g. spatial), (2) they help obtaining the compact, abstract model of the environment, and finally, (3)
the resulting model is compatible to symbolic classical planning. This paper is an extended abstract of a paper accepted in
International Conference on Automated Planning and Scheduling, Planning and Learning Track (2019). We cut out most
of the details to meet the space requirement. For details/citations please refer to the original material.
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1: Predicate symbol grounding (PSG) process for identifying

the predicates and obtaining the First Order Logic (FOL) repre-

sentation of the environment for symbolic reasoning. In this ex-

ample, an anonymous binary predicate pred1 can be interpreted by

humans as something like eating(object, subject).

1. Introduction
Recent success in the latent space classical planning [Asai 18,

Latplan] shows a promising direction for connecting the neural

perceptual systems and the symbolic AI systems. Latplan is a

straightforward system built upon a state-of-the-art Neural Net-

work (NN) framework (Keras, Tensorflow) and Fast Downward

classical planner [Helmert 04]. It builds a set of propositional state

representation from the raw observations (e.g. images) of the envi-

ronment, which can be used for classical planning as well as goal

recognition [Amado 18]. However, Latplan still contains many

rooms for improvements in terms of the interpretability and the

scalability which are trivially available in the symbolic systems.

An instance of such limitations of Latplan is that the reasoning is

performed on a propositional level, missing the ontological com-

mitment of the First-Order Logic (FOL) that the world comprises
objects and their relations [Russell 95].

FOL is a structured representation, which offers some ex-

tent of interpretability compared to the factored representation

of propositional logic formula [Russell 95]. Even if the predi-

cate symbols discovered by a Predicate Symbol Grounding sys-

tem (Fig. 1) are machine-generated anonymous symbols (not the

human-originated symbols assigned by manual tagging), the struc-

tures help humans interpret the meaning of the relations from

the several instances of the argument list (objects) that make the

predicate true. For example, when two propositions pred(0,1) and

pred(1,2) are true, we can guess the meaning of pred as +1,

or given pred(monkey, banana) being true, the meaning of pred
would be something like eating or holding. This is impossible in

a propositional representation where only the variable indices and

the truth values are known.

In this paper, we propose First-Order State AutoEncoder

(FOSAE, Fig. 2), a NN architecture which, given the feature vec-

tors of the objects in the environment, automatically learns to iden-

tify a set of predicates (relations) as well as to select the appropri-

ate objects as the arguments for the predicates. The resulting rep-

resentation is compatible to classical planning. We do not address

the object recognition problem, whose task is to extract the object

entities from a raw observation. We rather assume that they are

already extracted by an external system and converted into the fea-

ture vectors, given the recent success of object detection methods

like YOLO [Redmon 16] in image processing. While FOSAE is in

principle data-format (e.g. images, text) independent, we focus on

the image-based input in this paper.

FOSAE provides a higher-level generalization and the more

compact model by adding a constraint that the extracted relations

are common to multiple tuples of objects. Ideally, predicates model

the commonalities between the multiple instantiations of its argu-

ments, rather than rote learning some unrelated combinations. In

order to discover such predicates, our framework ensures that a

single predicate is applied to the different arguments within the

same observation. Otherwise, the network may choose to apply

them to the same or the very narrow combinations of arguments in

every observations, resulting in an inflexible predicate that just re-

members some combinations. Since the weights used to model the

predicates are utilized multiple times, this also reduces the number

of weight parameters required to model the environment.

2. Related Work
Recently, there are increasing interest in the effectiveness of

finding “relations” in Deep Reinforcement Learning [Mnih 15,

Zambaldi 18, Battaglia 18, DRL] community. In this paper, we ad-

dress the following issues in these work:

Human Supervision. Providing a relational dataset as an input

(as in [Battaglia 18] and neural theorem proving), or a probabilistic
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2: A First-Order State AutoEncoder (FOSAE) with P = 4 predicates, arity A = 2, and U = 3 Predicate Units. In this example, a feature

vector consists of the pixel values and the (x, y) location of an 8-Puzzle tile.

logic program containing predicate symbols which defines a net-

work, exhibits the knowledge acquisition bottleneck as the predi-

cates are grounded by humans and thus the system relies on human

knowledge.

Compatibility to the symbolic systems. Relational structures

in existing work do not return explicit boolean values even when

the environment is deterministic, fully observable and discrete in

nature. This makes them incompatible to symbolic systems such

as classical planners or goal recognition. Ideally, systems should

guarantee that a discrete environment is represented in a discrete

form, and numeric variables (such as those handled by numeric

planner) should be introduced only when necessary.

Interpretability. Some networks use real-valued soft attentions

(probability) to model the objects that take part in a relation, which

are similar to the predicate arguments. However, the relations re-

sulted from soft attentions are hard to interpret due to the ambigu-

ity, e.g. “Bob has-a ‘50% dog and 50% cat”’ in a “has-a” relation.

Continuous outputs of the relational structures are also difficult to

interpret.

Scalability for higher arities. Some work assumes the binary

relations and enumerates O(N2) pairs for N objects. The explicit

structure is impractical for larger arities A because the network

size O(NA) increases exponentially.

3. High-Level Overview
In order to find a first-order logic representation of the environ-

ment from raw data, we perform the following processes (Fig. 1):

(1) Object detection identifies and extracts a set of regions from

the raw data that contain objects. (2) Predicate symbol grounding
(PSG) finds the boolean functions that take several object feature

vectors as the arguments.

While both processes are nontrivial, there are significant ad-

vances in (1) recently. Object recognition in computer vision e.g.

[Redmon 16, YOLO], or named entity (noun / “objects”) recog-

nition [Nadeau 07, Mohit 14] in Natural Language Processing, are

both becoming increasingly successful. In this paper, therefore, we

do not address (1) and use a dataset that is already segmented into

image patches and bounding boxes. In principle, we could extract

the object vectors with these external systems.

Next, PSG identifies a finite set of boolean functions (predi-

cates) from the feature input, by learning to select the argument

list from the input and detecting the common patterns between the

objects that define a relation. As a result, we obtain the first-order

logic representation of the input as a list of FOL statements such

as pred2(obj1, obj2)=true, where the system automatically learns

to extract the arguments from the inputs, and also decides the se-

mantics of the predicates by itself, in an unsupervised manner.

We now introduce the core contribution of this paper, First-

Order State AutoEncoder (FOSAE, Fig. 2), a neural architecture

which performs PSG and obtains a representation compatible to

symbolic reasoning systems such as classical planners.

(Fig. 2, 1) Overall, the system follows the autoencoder architec-

ture that takes feature vectors of multiple objects in the environ-

ment as the input and reconstructs them as the output. The form of

the feature vector for each object is entirely problem/environment

dependent: It could be a hand-crafted feature vector, a flattened

vector of the raw pixel values for the object, or a latent space vec-

tor automatically generated from the image array by an additional

feature learning system (such as an autoencoder).

FOSAE consists of multiple instances of Predicate Unit, a unit

that (1) learns to extract an argument list from the input and (2)

computes the boolean values of the predicates given the extracted

argument list. The number of units U , the arity of predicates A

and the number of predicates P are hyperparameters which should

be sufficiently large so that the network can encode enough infor-

mation into a boolean vector and then reconstruct the input. If the

network does not converge into a sufficiently low reconstruction

loss, we can increase these parameters until it does. How to run

this iteration efficiently is a hyperparameter tuning problem which

is out of the scope of this paper.

(Fig. 2, 2) In order to extract the arguments of the predicates,

we use multiple attention networks. The use of attention avoids

enumerating O(NA) object tuples for N objects as was done in

the previous work. There are A attentions in each PU, thus each

PU extracts A objects from the N objects in the input. With U

PUs, there are U ×A attentions.

An attention network is implemented as a 2 fully-connected net-

works ending with a Gumbel-Softmax activation. Unlike previous

work which uses a Softmax in the output, where the attention vec-

tors take the continuous probability values produced by Softmax,

we instead use Gumbel-Softmax which converges to a discrete

one-hot vector so that the meaning of the extracted objects are
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3: The positive/negative examples of the arguments for the first 6 predicates of (U,A, P ) = (25, 2, 50). The first/second argument is

visualized in white / gray.

clear. For example, if an attention vector for an argument takes

a value (0, 1, 0), it is clearly extracting the 2nd object in 3 objects,

while if it were (0, 0.5, 0.5), it is unclear what was selected.

(Fig. 2, 3) Next, in each u-th PU, a set of NNs called Pred-
icate Network (PN) using Gumbel-Softmax takes the arguments

gu = (gu1 . . . guA) and outputs a discrete 1-hot vector of 2 cat-

egories, which means true if the first cell is 1, and false other-

wise. There are P PNs where each PN predp (1 ≤ p ≤ P )

returns a single boolean value and models a first order predicate

predp(gu1 . . . guA) ∈ {0, 1}. The boolean values have the same

role as the representation discovered by the propositional SAE.

(Fig. 2, 4) Attentions and PNs form a single PU. We repeat such

PUs U times, which results in U ×P total propositions. While the

weights in the attention functions (attua) are specific to each PU,

the PN weights for predp are shared across PUs (hence it lacks the

subscript u here). This makes the boolean function predp in differ-

ent PUs identical to each other, and force them to learn a common

relations among the different arguments because PNs take differ-

ent arguments in each PU.

(Fig. 2, 5) Finally, the input object vectors are reconstructed

from the propositional representation by concatenating the boolean

outputs from all PUs and feeding them to the decoder.

4. Modeling 8-Puzzle Instances
In order to evaluate FOSAE, we created a toy environment of

8-puzzle states using the feature vectors shown in Fig. 5. Each fea-

ture vector as an object consists of 15 features, 9 of which represent

the tile number (object ID) and the remaining 6 represent the co-

ordinates. Each data point has 9 such vectors, corresponding to the

9 objects in a single tile configuration. We generated 20000 transi-

tion inputs (state pairs) which are divided into 18000 (training set)

and 2000 transitions (test set).

Previous work on relational structures have not yet provided ev-

idence that they actually help modeling the environment and ex-

tract the abstract knowledge. For example, it is possible that even

if a relational structure like RN [Santoro 17] extracts multiple ar-

guments, the succeeding layers may ignore some arguments by

assigning zero weights, essentially modeling just unary predicates

(i.e. attributes) rather than the structural relationships.

We made the contour plots (Fig. 6) of the reconstruction errors

for the test set with various U,P,A, and compared their Pareto

fronts. For the same (U,P ) pair, the size of the bottleneck layer

(propositional vector) is U × P regardless of A, which makes the

direct comparison between different A feasible. We see that the

arity plays a critical role in finding the more compact informa-

tion, demonstrating that structural relations contribute to building

an abstract representation.

We also compared the number of trainable parameters (weights)

A U P Propositions Trainable parameters

1 18 5 90 287343

2 9 6 54 268273
3 9 7 63 303302

9 1 171 171 811828

SAE (Asai 2018) 18 3404467

1: Configurations (U,P ) ∈ [1, 20]2 for each A that achieved

the reconstruction error ≤ 0.1 with the smallest trainable parame-

ters.

in the network because for the same (U,P ), the larger arity means

the larger number of parameters in the networks which may help

the training. Table 1 shows the models with the fewest parameters

among those achieved the reconstruction error ≤ 0.1 for each A.

Next, we show how the hard attentions make the predicates in-

terpretable through visualization. In principle, we can visualize the

objects in the images selected by the attentions (e.g. monkeys, ba-

nanas in Fig. 1) using a decoder function that reconstructs the re-

gions from feature vectors. Fig. 3 shows the visualizations of the

arguments given to the predicate networks. Each subfigure is a vi-

sualization of an argument list vector gu = (gu1, gu2) randomly

sampled from the dataset. We humans could recognize the patterns

that are shared on the left hand side (positive examples) of each

row, which is not available in the propositional representation.

5. Evaluating Classical Planning Capability
We show that the FOL representation generated by FOSAE is a

feasible and sound representation for classical planning.

We tested the FOSAE-generated representation with AMA1

PDDL generator [Asai 18] and the Fast Downward [Helmert 04]

classical planner.

5.1 8 Puzzle
Omitted due to space.

5.2 Photo-Realistic Blocksworld
The dataset generator produces a 300x200 RGB image and a

state description which contains the bounding boxes (bbox) of the

objects. Extracting these bboxes is an object recognition task we

do not address in this paper, and ideally, should be performed by a

system like YOLO [Redmon 16]. We resized the extracted image

patches in the bboxes to 32x32 RGB, flattened it into a 3072-D

vector, and concatenated it with the bbox vector. The bbox vector is

200-dimensional and is generated by discretizing (x1, y1, x2, y2)

by 5 pixels and encoding it as a 1-hot vector (60/40 categories for

each x/y-axis), resulting in 3072+200=3272 features per object.

We then solved 30 planning instances with 3 blocks, generated

by taking a random initial state and choosing the goal states by the
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4: (middle) The initial/goal state of a Blocksworld instance. (right) The solution to this problem reconstructed from the latent vector. It

unpolishes the red cube, then moves the cylinder, the red cube, the yellow cube and then polishes the yellow cube.

x ylabel label=0,
x=0, y=1

5: A single 8-puzzle state as a 9x15 matrix, representing 9 ob-

jects of 15 features. The first 9 features are the tile numbers and

the other 6 features are the 1-hot x/y-coordinates.
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6: Contour plots of the reconstruction error of the test set for

A=1,2,3, (U,P ) ∈ [1..20]2. It shows that the larger arity helps

learning the compact representation.

3, 7, or 14 steps random walks (10 instances each). The system

correctly solved all instances, where the correctness of the plans

are checked manually. Fig. 4 shows an example solution generated

from the intermediate states of the plan.

6. Discussion and Conclusion
We proposed First-Order State AutoEncoder, a neural architec-

ture which grounds/extracts first order logical predicates from the

environment without human supervision. Unlike any existing work

to our knowledge, the training is fully automated (no manual tag-

ging / no predefined reinforcement signals) and the resulting rep-

resentation is interpretable, verifiable and compatible to symbolic

systems such as classical planners.

We do not claim that we fully solved the FOL generalization

because the learned FOL statements are quantifier-free, grounded

Extracted
 ObjectsPre Suc

7: An example Blocksworld transition. Each state has a per-

turbation from the jitter in the light positions and the ray-tracing

noise. Other objects may intrude the extracted regions. Objects

have the different sizes, colors, shapes (cube or cylinder) and sur-

face materials (metal or rubber).

representation that is essentially equivalent to the propositional

statements. However, this work is an important step toward the full

FOL generalization including quantification because quantifying a

FOL formula requires a set of predicate symbols in the first place.
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