
Final Sample Batch Normalization For Quantized Neural Networks

Joel Nicholls Atsunori Kanemura

LeapMind Inc.

We outline and conduct an empirical study into the effectiveness of a modified version of batch normalization, for combination
with quantized neural networks. The proposed method uses only the statistics of the final batch for determining the batch
normalization operation at the inference stage. This contrasts with the usual implementation, where population statistics are
accumulated over many batches of training. The proposed and existing methods are compared over several models and datasets,
which span both classification and object detection tasks. Overall, the proposed method exceeds the value and consistency of test
performance compared to the usual batch normalization, in the case of quantized networks. For floating point precision networks,
the usual method is best.

1. Introduction
Both batch normalization and quantization are widely used in

the deep learning community for improving the training and infer-

ence speed of neural networks, respectively. However, it has been

recently observed that the training of quantized neural networks

can suffer from fluctuating performance, which is related to the

way that batch normalization is implemented [8].

Batch normalization has for some time been an important tech-

nique in the deep learning toolkit. Primarily, batch normalization

is used to accelerate the training of deep neural networks. Some

argue that it eases training by reducing internal covariate shift [7],

while others say that it smooths the loss landscape [13]. Either

way, this technique has been empirically useful for deep learning

practitioners to improve training.

Quantization is used for streamlining neural network models.

Deep learning typically results in large models that are computa-

tionally expensive in the inference stage (e.g. to make predictions

on new data). Quantized neural networks deal with this deficiency

by greatly reducing the precision of the majority of parameters and

computations involved, without significantly hurting the accuracy

of the model.

To be explicit, here we are talking about very low precision,

where the neural network must be trained in a quantization-aware

way in order to give good performance. Weights and activations

can be only a few bits [16], or even binary [3], to rapidly accelerate

inference.

Prompted by the issue of fluctuating test performance of quan-

tized neural networks and its relation to batch normalization, we

have undertaken investigations on how to better combine these two

techniques. In particular, we find that the quantized neural network

has both higher test accuracy and is more consistent (has less jit-

ter), when the statistics of only the most recent batch are used for

determining the batch normalization used at inference.

This is in contrast to the standard method for batch normalization

in floating point precision neural networks, which uses population

statistics accumulated over many batches. We refer to our proposed

method as final sample batch normalization.

Contact: Joel Nicholls, LeapMind Inc. Tokyo 150-0044, joel@

leapmind.io

2. Method
For the neural network model and quantization functionality, we

use the Blueoil framework [6]. Blueoil is based on TensorFlow [1]

and provides convolutional neural networks in both floating point

and quantized precision.

Within the Blueoil framework (and within Tensorflow also),

there is an argument to the batch normalization operation called

decay, which is a hyperparameter that controls how batch normal-

ization statistics are accumulated.

The default batch normalization decay hyperparameter of

Blueoil is 0.99. This value is close to 1, which means that popula-

tion statistics are being used. Furthermore, both PyTorch [10] and

Tensorflow [14] use population statistics by default. We will ab-

breviate this (standard) implementation of batch normalization as

BN-pop. Throughout the experiments, BN-pop will refer to neural

network models with decay of 0.99.

Our proposed modification to batch normalization can be easily

implemented in Blueoil using a decay hyperparameter of 0.0. This

uses the final batch statistics, so we will abbreviate the method

as BN-final. Through empirical comparisons, we show that for

quantized neural networks, our proposed BN-final performs equally

well or better than BN-pop.

The quantized models of Blueoil use a combination of tech-

niques from the literature on quantized networks [2,11,16]. For all

experiments in this paper, the quantized neural networks have 2 bit

activations and 1 bit weights, except for the first and last layers.

To evaluate the effectiveness of our proposed final sample batch

normalization, we use classification and object detection models.

There are more specific hyperparameter details in Appendix A. We

compared BN-final and BN-pop over floating point precision and

quantized models for 3 classification datasets (CIFAR-10, CIFAR-

100 [9], and Caltech 101 [5]), and 1 object detection dataset (PAS-

CAL VOC [4]). Making a range of comparisons is important to

empirically establish the usefulness of our proposed change to the

batch normalization method.

3. Results
The main thrust of the results is the empirical comparsion be-

tween the existing method BN-pop, and our proposed modification

BN-final. Therefore, multiple training runs over various datasets

were made and the test performance was measured. For classifica-

tion, top-1 accuracy was used. For object detection, mean average

1

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2A4-E-2-05



Figure 1: Test accuracy and 0.5mAP for existing batch normal-

ization (BN-pop) and proposed batch normalization (BN-final) on

quantized neural network models.

precision (mAP) with 0.5 overlap threshold was used.

3.1 Main comparisons
The comparisons for quantized neural networks are given in

Figure 1. In all cases, BN-final gave higher test performance than

BN-pop. The CIFAR dataset shows the greatest difference.

The same comparisons are shown for floating point precision

neural networks in Figure 2. For this set, BN-pop gives higher

test performance. The order of preference of batch normalization

method is reversed.

This suggests that the proposed BN-final should be used for

quantized networks, but the usual BN-pop is better for floating

point precision networks. Many of the investigations on batch nor-

malization in the literature have focused on floating point precision

networks. BN-final is not effective on floating point precision net-

works, which is a possible reason that it had not been previously

explored.

3.2 Calculation of error bars
Here, we give more details about the values and error bars shown

in Figure 1, Figure 2, and Figure 4. Two independent training runs

were conducted for each experiment. However, two data points are

not enough to get meaningful error bars.

Therefore, for each experiment, we took the last 3 test accuracies

from the two training runs. These 6 data points were used to

calculate the mean and standard deviation for the experiment.

The test steps are separated by only 1 000 train steps. Therefore,

the last 3 test accuracies are not totally independent. But, they do

give a rough idea of the fluctuations that can be expected. The error

bars shown in the Figures are therefore generally an underestimate

of the true standard deviation that would be obtained if all data

points were completely uncorrelated.

Another point to note is that by taking the last 3 test steps, the

model is still being trained during that time. There is a possibility

that the performance is still increasing due to the training. However,

by eyeballing the plots of TensorFlow training, the test accuracy

has already levelled off at that late stage of training.

Figure 2: Test performance compared between existing BN-pop

and proposed BN-final, for floating point precision neural networks.

3.3 Test accuracy curve
Looking at the test accuracy of an example model over the

training run, as in Figure 3, it can be seen that BN-final allows

for much smoother generalization accuracy, consistently over the

whole training process.

The accuracy on the train dataset was not shown because the two

methods (BN-pop and BN-final), both act in the same way on the

training dataset. It is worthwhile to note that the point of the final

sample batch normalization method is to allow the trained model

to transfer to an inference model in a better way than the existing

batch normalization, for quantized networks.

In addition to the mean value of the test accuracy, the smoothness

of test accuracy over the training of quantized neural networks is a

positive point. It results in more consistent generalization accuracy,

even if the deep learning practitioner decides to finish training early.

The error bars shown in Figure 1 for various datasets also indicates

more consistent test accuracy for BN-final, in comparison to BN-

pop.

3.4 Additional quantizations
For classification on the CIFAR-100 dataset using quantized

neural networks, two additional model versions were used. These

other versions implement quantization in slightly different ways,

giving a broader view on the compatibility between quantization

and final sample batch normalization. They are shown in Figure 4.

Firstly, usual_quant makes use of channelwise quantization

(this is the same as was shown for the CIFAR-100 category in

Figure 1). Secondly, the network labelled layerwise_quant uses

layerwise scaling factors. This can be useful to reduce the number

of floating point precision computations in the neural network even

further than channelwise quantization.

Thirdly, the network divide255_quant uses 8 bit inputs for

the first convolutional layer. This differs with the usual kind of

quantized neural network, which uses image standardization to

provide floating point precision inputs to the first convolutional

layer. The benefit of using divide255_quant is that the required

precision of the first layer convolution is lowered, resulting in more

efficient inference.

2

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2A4-E-2-05



Figure 3: Time series plot for the test accuracy of the quantized

neural network against epochs of training completed. Both BN-

pop and BN-final are compared, for classification on the CIFAR-10

dataset. In this experiment, the batch size was 100, with 45 000

training images. The test accuracy was calculated once every 1 000

training steps, corresponding to once every 2.2 epochs, where the

overline indicates a repeating decimal.

The main point to note from Figure 4 is that the

divide255_quant network does a lot worse than the other two

networks, when using BN-pop. Instead, if using BN-final, all three

networks have similar performance.

This suggests that divide255_quant is especially sensitive to

the change between training model and inference model. One pos-

sible reason for why BN-final improves this network so significantly

in the inference is that it allows for more stability with respect to

the inputs. The results here are not enough to fully support this

kind of hypothesis, which is an area for further work.

4. Related works
Several other works have tampered with the standard batch nor-

malization. For example, instance normalization [15] uses the

batch normalization behaviour of training for the inference stage,

averaging over only the spatial dimensions of the batch in order to

improve on other works. Their batch normalization at inference is

not an affine transformation, so they have increased the computa-

tional cost of inference to improve style transfer. Our motivation

and implementation are quite different, since we are interested in

increasing the efficiency of deep learning.

Some works also consider batch normalization in the context

of quantized neural networks. Courbariaux et al. [3] implement

an approximate shift-based batch normalization to decrease the

computational effort by using bit shifting. This technique saves

computation in the training, and seems to be compatible with final

sample batch normalization. We have not tested this combination

because our main interest is in improving speed and accuracy of

inference. In the inference stage, the affine transformation of batch

normalization can be folded into scaling factors and layer bias,

resulting in only a small computation cost relative to the convolu-

Figure 4: Test accuracy compared between BN-pop and BN-final,

for different methods of quantization. In each case, the network

performs classification on the CIFAR-100 dataset.

tional layers.

Finally, Krishnamoorthi [8] implements a modification called

batch normalization freezing. After a certain number of training

steps, the updates of batch normalization statistics are frozen and

the batch normalization behaviour during training switches to that

of the inference stage. In this sense, the batch normalization be-

comes an affine transformation after the freeze step (which is a hy-

perparameter). This method reduces jitter by a large amount. How-

ever, the batch normalization is effectively switched off (frozen), at

the later steps of training. It is hard to make a direct comparison

with their work without more experiments because their whitepa-

per shows the effect of batch normalization on 8 bit weights and

activations, whereas our experiments involve 1 bit weights and 2

bit activations.

5. Conclusion
For float point precision networks, there is no benefit in changing

to BN-final. If anything, BN-pop is better. However, for quantized

networks, BN-final gives higher and more consistent test accuracy.

Moreover, using BN-final does not add any computational overhead

compared to the usual method of batch normalization. This makes

BN-final an excellent candidate for reducing the gap in performance

between quantized and floating point precision neural networks.

It seems that both the CIFAR dataset and the divide255_quant

network benefit especially well from BN-final. We hypothesise that

this dataset and network have something in common that causes

them to benefit most from BN-final: in both these cases the for-

ward function of the neural network model is a sensitive (easily

perturbed) function of its inputs. The CIFAR dataset provides very

low resolution inputs. The divide255_quant network enables

higher efficiency, but has a more sensitive first layer.

There is a difference between the forward functions in training

and inference due to the change in batch normalization behaviour to

an affine transformation. This increases the efficiency for inference,

but it generally causes a decrease in test accuracy. Therefore, one

possible reason for the success of BN-final is that it reduces the

3

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2A4-E-2-05



difference between the forward function in training and inference.

This gives the most benefit in cases (such as those mentioned in

the previous paragraph), where the forward function is a sensitive

function on its inputs. Here is an exciting direction for possible

future research.

A major test case that we have missed out is comparison for

the ImageNet [12] dataset. It is an important case because it is

often used as pretraining for other datasets, and is used in the deep

learning literature as a difficult and realistic problem. However,

there was not sufficient time to gather results on this dataset for the

current paper.

Another point to note about our proposed method is the case

where some batches contain outlier data, are imbalanced, or espe-

cially small. In the case of a dataset where some batches contain

poor quality outlier data, it is possible that the final batch is not

representative of the overall dataset. This could result in low test

accuracy.

One possible partial remedy is to save the model at multiple

steps near the end of training, and choose the best model based on

validation accuracy. When the batch size is imbalanced or small,

the single batch statistics will naturally be less consistent between

batches. This may exacerbate the issue of imbalanced datasets.

A Extra detail on experimental setup
Here we give further explanation on hyperparameters, as well as

the method for constructing the train and test datasets used in the

experiments.

CIFAR-10: 45 000 images were used for the train dataset and

10 000 images for the test dataset. The image size was 32×32 pixels.

We used 100 000 train steps, divide255_quant, and channelwise

scaling factors. The network in Blueoil is LmnetV1Quantize. For

the floating point precision version, network LmnetV1 and scaling

PerImageStandardization were used.

CIFAR-100: 45 000 images were used for the train dataset

and 10 000 images for the test dataset. The image size was

32 × 32 pixels. We used 100 000 train steps. We used

PerImageStandardization and channelwise scaling except

where stated. For the quantized version, we used the net-

work LmnetV1Quantize, and for floating point precision version

LmnetV1.

Caltech 101: 7 809 images were used for the train dataset

and 868 images for the test dataset. For Caltech 101 exper-

iments, we trained without augmentation. We used 10 000

steps, PerImageStandardization, Image_Size = 128, and

batch_size of 64.

PASCALVOC: The test dataset consists of 4 952 images from

PASCAL VOC 2007. The train dataset consists of 16 551 im-

ages from a mix of the remaining images of PASCAL VOC 2007

and 2012. We resize the images to 320 × 320 pixels. We used

divide255_quant, channelwise scaling, and 100 000 train steps.

In Blueoil, the network is called LMFYoloQuantize. The config

file is lm_fyolo_quantize_pascalvoc_2007_2012.py.

Acknowledgements
We thank Hiroyuki Tokunaga and Takuya Wakisaka from Leap-

Mind Inc. for their useful advice on this paper.

References
[1] Martín Abadi et al. TensorFlow: Large-scale machine learn-

ing on heterogeneous systems, 2015. Software available from

https://www.tensorflow.org/.

[2] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-

los. Deep learning with low precision by half-wave Gaussian

quantization. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5406–5414, July 2017.

[3] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks: Train-

ing deep neural networks with weights and activations con-

strained to +1 or −1. arXiv:1602.02830 [cs.LG], 2016.

[4] Mark Everingham, Luc Van Gool, Christopher K. I. Williams,

John Winn, and Andrew Zisserman. The Pascal Visual Object

Classes (VOC) challenge. International Journal of Computer
Vision, 88(2):303–338, September 2009.

[5] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning gener-

ative visual models from few training examples: An incre-

mental Bayesian approach tested on 101 object categories. In

CVPR Workshop on Generative Model Based Vision, 2004.

[6] LeapMind Inc.˙ Blueoil. https://github.com/

blue-oil/blueoil, 2018. [Online; accessed 5-Feb-2019].

[7] Sergey Ioffe and Christian Szegedy. Batch normalization

accelerating deep network training by reducing internal co-

variate shift. In International Conference on International
Conference on Machine Learning (ICML), 2015.

[8] Raghuraman Krishnamoorthi. Quantizing deep convo-

lutional networks for efficient inference: A whitepaper.

arXiv:1806.08342 [cs.LG], June 2018.

[9] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, University of Toronto, 2009.

[10] PyTorch. Normalization layers, torch.nn, pytorch documen-

tation. https://pytorch.org/docs/stable/nn.html#

normalization-layers. [Online; accessed 5-Feb-2019].

[11] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. XNOR-Net: ImageNet classification using

binary convolutional neural networks. In European Confer-
ence on Computer Vision (ECCV), pages 525–542, 2016.

[12] Olga Russakovsky et al. ImageNet Large Scale Visual Recog-

nition Challenge. International Journal of Computer Vision,

115(3):211–252, 2015.

[13] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Alek-

sander Madry. How does batch normalization help optimiza-

tion? arXiv:1805.11604 [stat.ML], May 2018.

[14] TensorFlow. tf.contrib.layers.batch_norm. https:

//www.tensorflow.org/api_docs/python/tf/

contrib/layers/batch_norm. [Online; accessed

5-Feb-2019].

[15] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance Normalization: The Missing Ingredient for Fast Styl-

ization. arXiv:1607.08022 [cs.CV], July 2016.

[16] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,

and Yuheng Zou. DoReFa-Net: Training low bitwidth

convolutional neural networks with low bitwidth gradients.

arXiv:1606.06160 [cs.NE], June 2016.

4

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

2A4-E-2-05


