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The Model Based Design is identified that hierarchy is structured on functions of each part to achieve a competitiveness in
a product design. As the hierarchy becomes complicated, design variables have a huge data space, so it is difficult to properly
make decisions in a short time even if a designer has extensive experience. It is verified whether Reinforcement Learning is
effective for the design of electric vehicles. When applied to the vehicle performance of the top of hierarchy, the design limit
of energy consumption was derived from the variables space of 128 to the 17th power and the optimal solution for Package

was learned from the variables space of 10 to the 77th power.

1. Introduction

In the product design of automobiles etc., a method based on
model base design (hereinafter described as MBD) is often used.
The product performance is made hierarchically related to the part
function, this method is effective for securing competitiveness.
Since it is structured on logical expressions such as design
calculations, quantitative consideration is possible, but it is
difficult to decide an appropriate design specification because
choices are enormous. It is verified whether Reinforcement
Learning is effective for decision making of design variables in
MBBD by using vehicle performance design.

2. Model Base Design

2.1 Electric Vehicle Concept Design

The design objects of vehicle performance are environment,
power, dynamic quality, package, strength endurance, and
correlation of related functions is complicated and intertwined.

e Level 0: Phenomenon of customer experience

e Level 1: Combination of multiple components which has
difficulty with each individual change

e Level 2: Single component which can be changed

It is tried applying Reinforcement Learning to EV design
calculation of environmental performance and Package, to realize
a long mileage with less battery & a large cabin. (Fig.1)
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Fig.1 Model Base Design for Vehicle performance
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2.2 Vehicle Energy Design

The evaluation values are energy efficiency, electricity
consumption and mileage. It is the design goal to reduce the
vehicle driving energy and improve the electric drive efficiency
and increase the regenerative energy to increase the mileage by
suppressing the battery capacity.

EEffi =W/W; + W) ™
Econs = (W, + Wre)/Lan @)
AER = Batt qpq/Econs ©

Egrri:energy ef ficiency

Econs: electric consumption
AER: electric driven mileage
W:vehicle driven Energy

W,: battery consumption energy
W,.: regenerated energy

Batt.qpq: battery electric capacity

Evaluation values are set the three performances on left side of
Equation (1), (2) and (3). Design variables are set 17 functions
which is related to rolling resistance, aerodynamic resistance,
accelerating resistance, electric drive efficiency and regeneration
efficiency which are components of evaluation values.

2.3 2.3 Vehicle Package Design

37 design variables are set from the C.G., mass, and geometries
of each component and so on. (Fig.2) 12 evaluation values are set

as their performances of environment, dynamics, package.

Fig.2 Design variables for vehicle package
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3. Reinforcement Learning

3.1 Modeling

Neural Network is individually set for each of Energy Design
and Package Design, design variables of Model Based Design are
set as input, and performance evaluated values are set as output.

(Fig.3)
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Fig.3 Neural Network for Design Calculations

In order to learn the Neural Network weighting parameters, a
value-based function and a policy-based function in the Markov
decision process are used.

Spa)=r+y rr}lax Q(St+1) Arv1) 4)
t
V(S = rr}zaxrta + vV (Sev1) (5)
t

Q:Value based function, V:policy based function

S:situation, a: action, r:reward, y: learning rate, t: time

3.2 Variable and Evaluation

The range of the design variable is set from the minimum value
and the maximum value. The variable selection can be made

between the minimum value and the maximum value.

Ximax — Xi,min
Xin = Ximin TN (6)
MNmax

i=1 ., ineeon=1 .. Npax

x:design variable, i: number of variables,n: division

A reward is made determined depends on an evaluation which
is calculated from the priority of performance evaluated values
and sensitivity of design variable ranges to them.

Eva, = functionl(wj,yj,bj,ci) @)

1, = function,(Eva,) (8)

Eva: evaluation, r:reward,

w: priority,y: per formance evaluated value, b: constant,
c: sensitivity, j: number of performance evaluated value,

i:number of design variable ranges

4. Verification Result
The experimental programs are coded with DQN, MCT, A3C.

4.1 Theoretical Limit of the Design Calculation

Design limits of vehicle energy performance can be calculated.
It is already known that the performance limit can be calculated in
case of the loss related variables are minimized and the electric
efficiency related variables are maximized, when the Battery

capacity become maximum in its design variable range. The
results of Reinforcement Learning are shown in Figure 4. The
range of design variable is normalized to be 0.7 to 1.0 It was
verified that the design limit was perfectly found by DQN in 1287
data space (17variables, 128choices). For MCT, only one variable
result differently. This variable is a source of another variable, but
it turns out not such a difference as to change another. There is
almost no influence on performance evaluated value due to so
small contribution.
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Fig.4 Learning Results for Vehicle Energy Design
4.2 Solutions in the threshold

In the case of Vehicle Package, since each of the 37 variables is
set to 128 choices, the data space of the design variable is 12837
(1077 more). From the huge Data space, a solution will be searched
for that matches competitiveness (a data set combination of 37
variables). A threshold value worthy of design consideration was
set to the performance evaluated value and learned by A3C to
achieve it.

Solutions reaching the threshold can be learned to 61, 101 set.
In this report, the optimum solution is selected for the design
concept (the long mileage, the large cabin, the small battery, more
than current competitors on the market). The standard deviation
and the optimal solution are shown in Fig.5. The optimal solution
exists within the deviation, and it can be understood that
competitiveness cannot be secured unless it is designed within this
range.

-Standard Deviation

Design variables Evaluations

Fig.5 Learning Results of Vehicle Package Design

4.3 The optimal solution versus an expert design

Figure 6 shows a comparison of the optimal solutions by
Reinforcement Learning and the result by authors. It can be known
that vehicle package by Reinforcement Learning has better frontal
collision performance than the design by author. On the design by
Reinforcement Learning, the rear passenger space and cargo
capacity which have trade off relationship to frontal collision are
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worse but kept on the threshold. It can be said that the design by
Reinforcement Learning is better.
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Fig.6 Comparison of Learning result with an expert’s

It can be considered that the design to make use of the space
efficiency of the rear part of the vehicle to the front part of the
vehicle was obtained because the setting of the priority of
performance and sensitivity of design range in Reinforcement
Learning was appropriate. The performance evaluated values of
the vehicle package are the following items.

e Vehicle height, Roof geometry (Air drag)
e Frontal collision stroke

e Driving position, driver space

e Rear passenger space

e Cargo capacity

e C.G., Vehicle mass

It turns out that each of them forms a continuous space. (Fig.7)
It is a multi-disciplinary relationship, and even if a designer has

lots of experience, it will not be a reason to get the optimal solution.

In the case that the design variables have a complex trade off to
the evaluation values, the Reinforcement Learning can search the
design variables widely and deeply according to the priority of the
performance evaluated value and the sensitivity of the design
variable ranges. The depth & width of the search range is an
advantage superior which the designer cannot have.
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Fig.7 Evaluation values for vehicle package

5. Conclusion

When Model Based Design has a hierarchical structure that is
multilayered and the design variable has a huge data space,
Reinforcement Learning has superiority in determining optimal
design specifications.

e The greatest advantage of Reinforcement Learning is the
breadth and depth of search for design variables, even
skilled mature people can never catch up.

e In order to make full use of advantage, it is necessary to
enrich the logical formulas to build MBD, such as design
calculations, Database and so-on.

e The role of the designer changes to making the priority of
the evaluation value and the sensitivity of the variable
faithfully conform to the design purpose.

o [t will not be the role of the designer to search for variables
that reach the performance threshold.

e The learning performance of A3C is very high, various
choices of reaching the threshold are obtained and it is
possible to design with deviation taken into account.

In this report, the priority of the performance evaluated values
and sensitivity of the variable range for the value-based function
and the policy-based function are set by trial and error. Their
grounds are considered by an author through the way to overtake
the competitor and the balance of performance targets. In the next
stage they will be made objects of Reinforcement Learning.
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